首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
根据现行《建筑钢结构防火技术规范》中固支组合梁抗火承载力验算方法,提出了固支组合梁抗火设计的临界温度法,并给出了临界温度的计算方法,对影响固支组合梁临界温度的参数进行了分析。研究发现:确定荷载比下固支组合梁的钢梁截面、材料强度、有效宽度等对临界温度的影响较小,而耐火极限和楼板厚度对固支组合梁临界温度影响较大。给出了一般固支组合梁不同楼板厚度、不同耐火极限下,不同荷载比对应的临界温度和防火保护厚度的计算方法,可供工程设计使用。  相似文献   

2.
The behaviour of composite cellular floor beams is becoming important as such members are increasingly used in multistorey buildings. In the event of fire, this issue becomes increasingly critical, particularly for exposed steelwork. In a fire situation, a composite beam has a much higher perimeter area exposed to fire in its lower web-flange section than in the upper web-flange section, and so the temperature distribution across a composite beam is usually non-uniform. The reduction in fire of the strength and stiffness of the material properties of the perforated steel beam, as well as differential thermal expansion, therefore becomes an important influence on the overall behaviour of the composite beam. The objective of this research is to enhance the level of understanding of the generic behaviour of composite cellular floor beams in fire conditions. In this paper, three-dimensional nonlinear finite element models of composite cellular floor beams have been developed, taking into consideration the influence of the changes in material properties with temperature. Experimental data from furnace tests on cellular composite floor beams obtained from previous research work has been used to validate the FE models. An analytical model based on existing design guides is also presented in this paper. It is concluded that finite element analysis results are in good agreement with the experimental data, and all the failure modes have been accurately predicted. The proposed simplified analytical methods show reasonable agreement with the test and FE results, and are always conservative.  相似文献   

3.
This paper presents the development of an analytical model of steel–concrete partially composite beams subjected to fire. The model includes consideration of temperature dependent material properties, temperature dependent interface slip between concrete and steel, non-uniform temperature distributions throughout the cross-section and the effect of different rates of thermal expansion at the concrete–steel interface. Model predictions showed good agreement with the results of fire tests on two composite beams reported in an earlier companion paper as well as with limited experimental data published in literature. An extensive parametric study was undertaken by using the proposed model. Parameters considered in this study included geometric dimensions of the composite beam, material grades of steel and concrete, shear connection ratio, reinforcing steel ratio in the concrete slab, and load level on the beam. The parametric study clearly shows that shear connection ratio and load level significantly influence the fire performance of partially composite beams. The critical temperatures with shear connection ratio of 50%, 75% and 100% are 645°C, 602°C and 548°C, respectively, under load level of 0.6. The critical temperatures under load ratio of 0.5, 0.6 and 0.7 are 468°C, 553°C and 633°C respectively, with a shear connection ratio of 50%.  相似文献   

4.
An efficient nonlinear 3D finite element model has been developed to investigate the structural performance of composite slim floor steel beams with deep profiled steel decking under fire conditions. The composite steel beams were unprotected simply supported with different cross-sectional dimensions, structural steel sections, load ratios during fire and were subjected to different fire scenarios. The nonlinear material properties of steel, composite slim concrete floor and reinforcement bars were incorporated in the model at ambient and elevated temperatures. The interface between the structural steel section and composite slim concrete floor was also considered, allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the composite beam. Furthermore the thermal properties of the interface were included in the finite element analysis. The finite element model has been validated against published fire tests on unprotected composite slim floor steel beams. The time–temperature relationships, deformed shapes at failure, time–vertical displacement relationships, failure modes and fire resistances of the composite steel beams were evaluated by the finite element model. Comparisons between predicted behaviour and that recorded in fire tests have shown that the finite element model can accurately predict the behaviour of the composite steel beams under fire conditions. Furthermore, the variables that influence the fire resistance and behaviour of the unprotected composite slim floor steel beams, comprising different load ratios during fire, cross-section geometries, beam length and fire scenarios, were investigated in parametric studies. It is shown that the failure of the composite beams under fire conditions occurred for the standard fire curve, but did not occur for the natural fires. The use of high strength structural steel considerably limited the vertical displacements after fire exposure. It is also shown that presence of additional top reinforcement mesh is necessary for composite beams exposed to short hot natural fires. The fire resistances of the composite beams obtained from the finite element analyses were compared with the design values obtained from the Eurocode 4 for composite beams at elevated temperatures. It is shown that the EC4 predictions are generally conservative for the design of composite slim floor steel beams heated using different fire scenarios.  相似文献   

5.
Concrete-steel composite beams, when they are exposed to high temperatures, it increases the quantity of heat inside the composite beams that restrain temperature rise caused by concretes. As a result, composite beams appear to have better fire resistance efficiency than regular steel beams due to the integrated structure between materials. In the case of composite beams, the temperature rise of steel exposed externally is directly related to the shape of sections and the degree of exposure. In this study, fireproof spray coat, approved as fire resistant construction for composite beams and regular steel beams, are coated in the same thickness and exposed to standard fire conditions. Then, the relationship between temperature history of steel and section factors of composite beams, derived from the fire resistance test result, is compared and analyzed. As a result, we came to a conclusion that the steel temperature measurement results and section factors per material are closely related, and it suggests that a standard approval of fire resistant construction can be widely used, instead of getting approval for each member, if relatively better performance can be predicted by distinct condition of fire resistance efficiency of members.  相似文献   

6.
Experiment on restrained steel beams subjected to heating and cooling   总被引:2,自引:0,他引:2  
This paper describes the performance of restrained steel beams in fire experiments that were completed recently in the Fire Laboratory of Tongji University. It is shown that restrained steel beams have better fire-resistant capability than isolated steel beams. At the beginning of heating due to fire, an internal axial compression force was produced in the restrained beams by thermal expansion. When the temperature was up to a certain value, the internal axial compression force in the beams began to decrease, and eventually the compression force vanished and the tension force was initiated, due to the increase in the deflection of the beams causing a catenary action. This phenomenon explains why a restrained steel beam has higher fire-resistant capacity than an isolated steel beam. After the fire went out, a larger tension force was produced in the restrained steel beams by contraction as the temperature decreased. In addition, local buckling at the bottom flange of the beams near the ends was observed in the experiments. According to the results from the experiments, the stiffness of the axial restraint plays an important role in the behavior of restrained steel beams subjected to heating and cooling in a fire.  相似文献   

7.
为研究钢梁残余应力对预应力连续组合梁抗火性能的影响,建立了预应力连续组合梁在高温下非线性升温过程受力行为的有限元模型。通过考察梁的破坏形式、跨中挠度、预应力拉索张力、截面弯矩以及梁的曲率等关键参数随温度的变化,得到不同残余应力模式对组合梁抗火性能的影响机理。分析结果表明:残余应力的分布并不总是对预应力钢-混凝土组合梁的高温性能产生不利影响,腹板具有初始残余拉应力分布模式的预应力钢-混凝土组合梁高温下的挠度相对最小;残余应力主要通过影响截面正应力分布来影响钢梁的截面刚度;在临界状态时,残余应力对组合梁截面刚度的影响不明显;不同残余应力模式对高温下预应力钢-混凝土组合梁的截面抗弯刚度影响不同;当预应力钢-混凝土组合梁的初始残余应力模式以腹板全截面拉应力为主时,预应力钢-混凝土组合梁跨中截面抗弯刚度最大;当残余应力对组合梁跨中截面抗弯刚度有利时,梁跨中截面处中和轴位置比无残余应力影响时较高。  相似文献   

8.
Presented in this paper is an analytical investigation on fire resistance of high strength Q460 steel beam subjected to non-uniform temperature distribution. Based on the critical bending moment associated with overall flexural stability and results obtained from the previous experimental investigation on the mechanical properties of Q460 steel at elevated temperature, an equivalent stiffness method is established to evaluate the fire resistance of the beam with the consideration of the influence of temperature gradient across the section of the beam. Lateral torsional buckling resistance, critical temperature and overall stability coefficient are obtained for flexure of high strength Q460 steel beams at elevated temperature. A 3-D nonlinear finite element model, which is capable of accounting for temperature gradient and predicting critical bending moment of Q460 steel beam at elevated temperature, is developed. Results from the finite element simulations are compared with the results determined by the proposed equivalent stiffness method and there is a good agreement between the results of the two methods with the maximum difference of 6%. Using the equivalent stiffness method, parametric studies were carried out to investigate effects of steel grade and temperature distribution pattern on fire resistance of high strength Q460 steel beams. Accordingly, a simplified design approach was proposed to predict the critical temperature and overall stability coefficient of Q460 steel beams subjected to non-uniform temperature distribution. The simplified approach is applicable to high strength Q460 steel beams with cross section dimensions ranging from 175 mm to 350 mm and 250 mm to 500 mm for flange width and section height, respectively.  相似文献   

9.
为了得到高强度Q460钢梁高温下的抗火性能,采用有限差分法推导了高温下高强度Q460钢梁的截面温度计算方法并计算了温度分布,提出了钢梁各个组件温度的修正公式。基于常温下钢梁的整体稳定临界弯矩,根据Q460钢材的高温力学性能参数,分析得到了高强度Q460钢梁高温下临界弯矩和整体稳定验算参数;并利用等效刚度法考虑了温度不均匀分布的影响,研究了高强度Q460钢梁在不均匀温度下的极限承载力、临界温度和稳定系数。  相似文献   

10.
基于考虑横向荷载影响推导的钢梁整体失稳发生弯扭屈曲时临界弯矩的计算公式,引入高温下钢材的弹性模量随温度的折减系数,给出了火灾下钢梁整体失稳时临界温度的计算方法。研究表明,该方法计算结果与试验值吻合较好,满足结构抗火设计的精度要求。  相似文献   

11.
系列文章的第1篇已经对高强度Q460钢梁高温下的抗火性能进行了理论分析,给出了高强度Q460钢梁的温度分布和极限承载力、临界温度和稳定系数的计算方法。该文采用有限元分析对高强度Q460钢梁的温度分布和极限承载力进行了计算,并将计算结果与理论分析和试验结果进行了对比,验证了理论分析的正确性。对高强度Q460钢梁和普通Q235钢梁的抗火性能进行了对比,得到两者在抗火性能方面的区别。提出了高强度Q460钢梁抗火设计的简化方法,并通过一个算例演示了简化设计方法的使用。  相似文献   

12.
The behaviour of composite steel-concrete beams at elevated temperatures is an important problem. A three-dimensional push test model is developed herein with a two-dimensional temperature distribution field based on the finite element method (FEM) and which may be applied to steel-concrete composite beams. The motivation for this paper is to increase the awareness of the structural engineering community to the concepts behind composite steel-concrete structural design for fire exposure. The behaviour of reinforced concrete slabs under fire conditions strongly depends on the interaction of the slabs with the surrounding elements which include the structural steel beam, steel reinforcing and shear connectors. This study was carried out to consider the effects of elevated temperatures on the behaviour of composite steel-concrete beams for both solid and profiled steel sheeting slabs. This investigation considers the load-slip relationship and ultimate load behaviour for push tests with a three-dimensional non-linear finite element program ABAQUS. As a result of elevated temperatures, the material properties change with temperature. The studies were compared with experimental tests under both ambient and elevated temperatures. Furthermore, for the elevated temperature study, the models were loaded progressively up to the ultimate load to illustrate the capability of the structure to withstand load during a fire. It is concluded that finite element analysis showed that the shear connector strength under fire exposure was very sensitive. It is also shown that profiled steel sheeting slabs exhibit greater fire resistance when compared with that of a solid slab as a function of their ambient temperature strength.  相似文献   

13.
采用外套薄壁U形钢板、内灌无收缩灌浆料加固受火后钢筋混凝土梁,该加固技术能有效避免灌浆材料脱落,具有长效的加固功能。为验证该加固方法的有效性,进行了14根混凝土梁的静载试验,研究了U形钢板厚度和受火时间对加固RC梁受弯性能的影响,以及U形钢板厚度和剪跨比对加固RC梁受剪性能的影响。借鉴常温下组合梁承载力的计算方法,给出了薄壁U形钢板加固受火后RC梁受弯和受剪承载力的计算公式。结果表明:受火1.0、1.5h后混凝土梁的受弯承载力分别降低了9.4%、10.4%,剪跨比为1.74、2.58的混凝土梁受火1.5h后受剪承载力分别降低了19.5%、10.6%。薄壁U形钢板加固受火后RC梁的受弯、受剪承载力相比未受火RC梁分别提高了127.4%~151.7%、21.3%~56.7%。在薄壁U形钢板内侧和上翼缘焊接角钢形成的内隔环能保证薄壁U形钢板和混凝土共同工作,加固后试件可作为完全剪切连接的组合梁。加固试件发生受弯破坏时内隔环承受的纵向剪力较大,而发生受剪破坏时内隔环承受的纵向剪力较小。  相似文献   

14.
The great majority of the studies in this area emphasise further the structural behaviour of cold-formed steel members by means of analytical approximation and purely numerical methods. In addition, they generally only take into account the structural behaviour of members with just one profile. On the contrary, this paper reports a series of flexural tests under fire conditions focused on cold-formed galvanised steel beams consisting on compound cold-formed steel profiles which are often used in floors and roofs of warehouses and industrial buildings. The main objective of this research was to assess the failure modes, the critical temperature and the critical time of the studied beams. Other important goals of this research work were also to investigate the influence of the cross-sections, the axial restraint to the thermal elongation of the beam and the rotational stiffness of the beam supports. Finally, the results showed above all that the critical temperature of a cold-formed steel beam might be strongly affected by the axial restraint to the thermal elongation of the beam.  相似文献   

15.
鲁博  王海忠  王文婷 《钢结构》2008,23(11):62-65
为了研究翼缘宽厚比对高温下钢梁抗火性能的影响,使用ANSYS有限元程序模拟火灾升温条件下的约束钢梁,通过建立模型,时钢梁进行热-结构耦合作用的计算。计算结果显示:钢梁截面温度为非均匀分布,约束钢梁在火产生的温度应力下会发生较大的挠度。通过比较轴力、挠度等随温度变化的规律,分析不同翼缘宽厚比对钢梁抗火性能的影响。  相似文献   

16.
冷弯薄壁槽钢-混凝土组合梁受火试验研究   总被引:1,自引:0,他引:1  
对5个冷弯薄壁槽钢-混凝土组合梁试件进行在ISO-834标准火灾下的受火试验。试验中考虑了荷载水平、防火涂层厚度和槽钢截面高度等参数的影响。试验结果表明:荷载水平、防火涂层厚度和槽钢截面高度是影响组合梁抗火性能的主要因素,其他因素影响很小;在ISO-834标准火灾下,以跨中挠度δ=l/25作为组合梁达到耐火极限的判别标准是合适的;填充混凝土可有效提高组合梁的整体刚度和延性,使其在高温下直至破坏仍可保持完整性,没有出现高温局部屈曲现象;在槽钢上直接涂刷防火涂层不能保证其与槽钢表面的紧密结合,需要改进组合梁的防火涂层施工工艺;试验结果验证了有限元分析结果的正确性。  相似文献   

17.
Current design approaches to assess the lateral torsional buckling capacity of steel beams in fire are based on the assumption of uniform steel temperature. This paper investigates the effect of temperature gradients on the lateral torsional buckling behavior of steel wide flange (W) beams in fire conditions. The effects of localized fires and the temperature gradients they produce in steel beams were studied. Laterally unrestrained beams of various dimensions were subjected to a range of load ratios. The location of the localized fire was varied to provide different heating conditions. The standard ISO834 fire, and a uniform temperature condition in which the steel temperature was ramped linearly were used for comparison. The study shows that temperature gradients within a steel W-beam may have a detrimental effect on the lateral torsional buckling capacity of the beams in fire. The critical temperature, defined as the maximum temperature in a steel beam at which the beam undergoes lateral torsional buckling, in real fires may be hundreds of degrees lower than that in the standard ISO834 fire. The critical temperature in real fires may also be lower than that in the uniform heating condition. Design approaches based on the standard ISO834 fire or uniform steel temperature assumption may give unconservative results if the potential real fires are localized fires.  相似文献   

18.

The aim of this study is to examine the behavior of protected and unprotected steel–concrete composite I-beams with large cell diameters (D0/H?=?0.7) and closely spaced cell configurations under the ISO 834 fire curve. Previous studies on experimental full-scale fire performances of cellular beams have been somewhat limited under vertical service loads and different insulation properties. To address this limitation, a total of four composite beams, two unprotected (one beam with a solid web, and one cellular beam) and two protected cellular beams (60 min fire resistance with implementation of water and solvent-based intumescent coatings) were tested. As outputs of the tests, the failure modes observed, such as web buckling, the Vierendeel effect, the slab behavior, including the mechanism of concrete cracking, the overall displacement behavior (i.e., deflected shapes) up to collapse at very large deflections, and temperature changes in the steel elements are discussed. It was concluded that the quality of the intumescent coating applied is crucial in achieving the desired fire resistance. Experiments showed that unprotected trapezoid deck voids did not have a decisive influence on the behavior of the beams for up to 60 min of fire testing. At high temperatures, similar crack patterns occurred in the composite slabs of the protected and unprotected steel–concrete composite cellular beams. In the protected beams, the behavior of reactive coatings was significant and resulted in a non-uniform temperature distribution in these beams’ web and flanges.

  相似文献   

19.
Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span–depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.  相似文献   

20.
为研究由冷弯卷边H形开孔薄壁钢梁和预制轻骨料混凝土板形成的装配式组合楼板的受火性能,对6个两端简支组合楼板试件开展了高温下试验研究,得到了试件的温度及位移响应。研究结果表明:在等效均布荷载2.0 kN/m2及最高炉温为600℃的烃类火灾作用下,以轻骨料混凝土及腹板开孔薄壁钢梁形成装配式组合楼板具有良好的抗火性能,组合楼板的跨中挠度最大为L/44(L为组合楼板跨度)时,试件仍保持良好的整体性;主钢梁腹板开孔直径与分布形式对组合楼板的整体抗火性能均有显著影响,为减小组合楼板高温下的位移响应,对主钢梁腹板的开孔宜优选孔径大、数量少的分布形式;抗剪键数量对组合楼板抗火性能的响应影响远大于对预制板类型的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号