首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Naβ/β″-Al2O3膜的制备与电学性能研究   总被引:1,自引:0,他引:1  
通过MgAl2O4-α-Al2O3复合相陶瓷基体与Li2O,Na2O气氛的反应制备了Li2O和MgO共同稳定的Naβ/β″-Al2O3膜,相分析的结果表明,反应温度是决定膜中β/β″Al2O3相形成速率的主要因素,当温度低于1100℃时,α-Al2O3基体不能转化为β/β″-Al2O3基体中的MgAl2O4可以促进膜的形成,并降低膜的形成温度,交流复阻抗谱和四极法测量的结果表明,复合基体表面形成的  相似文献   

2.
Al2O3的粉末特征对β-Al2O3烧结性能的影响   总被引:2,自引:0,他引:2  
研究了Al2O3原料在不同热处理条件下的相组成和颗粒形貌以及Al2O3粉末特征对Na-β″-Al2O3烧结性能的影响,实验表明,只有α-Al2O3才能烧结成致密的β″-Al2o3陶瓷。  相似文献   

3.
研究了Na-β″-Al2O3陶瓷管制制备的反应烧结法,即在900℃分解初始组成,而后快速反应烧结和分阶段退火转相的工艺。制备的β″-Al2O3管具有良好的性能,双重显微结构也在一定程度上得到控制。  相似文献   

4.
本工作研究了β″-Al2O3陶瓷压人料的化学组成,制备方法对其密度1电导及显微结构的影响。  相似文献   

5.
晶内型Al2O3—SiC纳米复合陶瓷的制备   总被引:36,自引:5,他引:31  
研究了沉淀法制备Al2O3-SiC纳米复合陶瓷的工艺过程,利用Al2O3从γ相到α相的蠕虫状生长过程,使大部分纳米SiC颗粒位于Al2O3晶粒内,用沉淀法制得的、含有5vol%SiC的Al2O3-SiC纳米复合陶瓷,其强度为467MPa,韧性为4.7MPa.m^1/2,与一般的Al2O3陶瓷相比有较大的提高,显示了沉淀法制备Al2O3-SiC纳米复合陶瓷的优点。  相似文献   

6.
本文研究了分散剂种类数量、pH值等对大颗粒α-Al2O3陶瓷浆料稳定性的影响,得到了具有一定的粘度和流动性适于制备α-Al2O3陶瓷膜管的稳定浆料。  相似文献   

7.
Al2O3—TiC—Co与Al2O3—TiC陶瓷冲蚀磨损行为的比较研究   总被引:1,自引:0,他引:1  
通过特殊的化学处理方法,完成了对Al2O3及TiC陶瓷粉末的钴包覆,将包覆后的两种粉安70wt%Al2O3-Co和30wt%TiC-Co的比例混合烧结出硬度和韧性都较理想的Al2O3-TiC-Co(ATC)精细陶瓷,通过SEM观察研究其冲饥蚀磨损行为,并对AT30(70wt%Al2O3-30wt%TiC)和ATC陶瓷的冲蚀行为机制进行了比较研究,与AT30陶瓷相比,ATC陶瓷良好的综合力学性能和细  相似文献   

8.
Naβ‘’—AlO3与水的作用   总被引:1,自引:0,他引:1  
本文借用了X射线衍射相分析和热分析Mg或Li稳定的Naβ-Al2O3粉体和陶瓷在不同温度条件下与水发生的作用进行了系统地研究。实验表明,在密闭的常温条件下水主要以分子形式进入Naβ-Al2O3的传导层内,形成水合物Naβ-Al2O3.H2O;随着温度的升高,在β-Al2O3中将发生H3O^+与Na^+之间的离子交换,生成(Na^+,H3O^+)β-Al2O3.H2O;当温度进一步提高至250℃时,  相似文献   

9.
本文介绍了用化学共沉淀和在适当温度下煅烧以直接制备YAG-Al2O3纳纳米复合粉体的新方法。XRD结果表明,所得粉体具纯的YAG和α-Al2O3相,因此其化学组成符合配料的组分设计,用本方法制备的25vol%YAG-Al2O3复合粉体经热压烧结,所得的致0密体材料为晶内型纳米复合材料,其抗弯强度达612MPa,断裂韧性为4.54MPam^-1/2,都比单相Al2O3陶瓷有大幅度提高。  相似文献   

10.
TiO2—Al—B系反应烧结制备的复相陶瓷和原位Al基复合材料   总被引:2,自引:0,他引:2  
采用反应烧结方法,利用TiO2,Al和B粉末间的放热反应的较低的温度下制备Al2O3-TiB2复相陶瓷和原位生长Al2O3和TiB2弥散粒子增强Al复合,Al2O3-TiB2复相陶瓷是密度ρ-0.8的多孔体,由尺寸小于2μm,在基体中呈现均匀分布,没有发现Al3Ti生成,这种原位Al基复合材料具有优于SiCw/Al复合材料的强度。  相似文献   

11.
本文主要通过对含有14mol%CeO2的Ce-TZP及不同结构参数的Ce-TZP/Al2O3层状复合材料断裂韧性的测试,从力学和材料角度出发分析Al2O3层厚及Al2O3层中Ce-TZP的含量对材料力学性能的影响。同时通过对KIC试样断裂后断面及受力侧面的激光拉曼微区分析,来定性解释Al2O3层的引入对Ce-TZP相变区开头及相变量的影响,从而揭示此类材料的增韧机制?  相似文献   

12.
熔融碳酸盐燃料电池隔膜用LiAlO2制备   总被引:11,自引:0,他引:11  
将Al2O和Li2OC3混合,600-700℃高温焙烧制备熔否则碳酸盐燃料电池囊和LiAlO2粉体。工业生产Al2O3颗粒粒度和堆密度大,制得的LiAlO2粉体较粗,有机金属化合物水解再脱水制备的Al2O3颗粒粒度和堆密度小,制备的LiAlO2粉体细。  相似文献   

13.
AlOOH对Al2O3直接凝固注模成型坯体强度等性能影响   总被引:6,自引:0,他引:6  
为了改善直接注模成型(DCC)氧化铝的坯体性能,在Al2O3-DCC过程中加入AlOOH本文详细研究了Al2O3+AlOOH体系的湿坯性能,干燥行为及烧结致密化过程,结果表明,少量AlOOH加入可显著提高Al2O3的湿坯抗压强度和弹性模量,当AlOOH体积含量〈3.0%时对干燥过程没有影响,干燥坯体经无压烧结后可获得烧结密度达3.97g/cm^3(99.7%TD)。显微结构均匀的α-Al2O3相。  相似文献   

14.
表面诱导沉淀法制备Al2O3-ZrO2纳米复合粉体   总被引:7,自引:0,他引:7  
刘晓林  黄勇  袁蓉 《无机材料学报》2000,15(6):1089-1092
采用表面诱导沉淀法,制备了Al2O3-ZrO2(15vol%)纳米复合粉料,利用透射电子显微镜对其形貌进行了表征,结果表明:在pH=5时,可以使ZrO2前驱体均匀地包裹在Al2O3颗粒表面,经过800℃煅烧之后,Al2O3x颗粒表面均匀地结合着粒径约为30nm的ZrO2颗粒,ZrO2颗粒尺寸均匀,该粉体经过24h球磨和超声波处理之后,未发生ZrO2颗粒脱落现象,表明ZrO2颗粒与Al2O3颗粒表面  相似文献   

15.
高分散、均混合Al2O3-SiC-ZrO2(3Y)水悬浮液   总被引:9,自引:0,他引:9  
用微波法制备主水合二氧化锆,通过包覆工艺,将Y(OH)3均匀地包覆在水合二氧化锆粒子表面,制备出ZO2(3Y)的先驱体。然后用聚甲基丙烯酸铵(PMAA-NH4)对α-Al2O3、纳米SiC及包覆水合二氧化锆表面的改性。  相似文献   

16.
氧化钇含量对Al2O3/Y—TZP复相陶瓷的影响   总被引:6,自引:0,他引:6  
本文以ZrOCl2.8H2O、Al2O3及Y(NO3)3为原料,用共沉淀法合成Y2O3含量不同的ZrO2-Al2O3复合粉体,并采用热压工艺制备复相陶瓷。研究了氧化钇含量对复相陶瓷力学性能及应力诱导下氧化锆相变能力的影响。  相似文献   

17.
Al2O3—SiO2—TiO2复合陶瓷薄膜的制备与结构   总被引:1,自引:0,他引:1  
曾智强  萧小月 《功能材料》1997,28(6):599-603
本文利用Sol-Gel法制备了Al2O-SiO2-TiO2复合陶瓷薄膜,讨论了主要内容是体系成分(Al:Si:Ti摩尔比)对落膜制备过程及结构的影响。通过分步水解法可以得到稳定的Al2O3-SiO2-TiO2复合溶胶,进而制备复合陶瓷薄膜。组分间的静电作用是溶胶凝结的原因。三组分中,Si/Ti摩尔比是决定溶胶稳定性的主要因素。通过XRD对薄膜的相组成进行了分析,表明复合薄膜由Al4Ti2SiO12  相似文献   

18.
Al—Al2O3—玻璃复合材料的制备与性能   总被引:4,自引:0,他引:4  
采用无压烧结工艺,制备了Al-Al2O3-玻璃复合材料。研究了Al-玻璃,Al2O3-玻璃的润湿性。发现玻璃能促进Al与Al2O3结合;Al-Al2o3-玻璃复合材料具有良好的强度和耐磨损性能。  相似文献   

19.
表面择优取向析晶β-BaB2O3透明玻璃陶瓷的研究   总被引:1,自引:1,他引:0  
本文采用传统熔融方法制备了BaO-B2O3系列基础玻璃3(BaO-B2O3、BaO-B2O3-0.1Al2O3、BaO-B2O3-0.SiO2、BaO-B2O3-0.4TiO2)(mol%)通过对基础下班进行表面修饰处理,控制表面析晶条件,获得了含有沿α轴择优到向生长BBO微晶的透明BaO-B2O3系列表面析晶玻璃陶瓷。  相似文献   

20.
致密TiC-Al2O3复合陶瓷材料的自蔓延高温合成   总被引:1,自引:0,他引:1  
本文通过自蔓延高温合成结合准热等静压法制备出了致密度为97.2%的TiC-Al2O3复合陶瓷,分析了合成产物的结构,组织和性能。结果表明,复合陶瓷由近乎球形的TiC颗粒和不规则的Al2O3相组成,TiC和Al2O3之间的界面光滑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号