首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过组成设计,以Si3N4、AIN、Al2O3和Y2O3粉末为原料,采用气氛加压烧结工艺,在1800~1980℃,1.0~3、0MPaN2压力下烧结,制备了α/β-Sialon陶瓷材料,通过XRD,SEM和HREM等分析可见,其材料的显微结构是由棒状的β-Sialon和近似等轴的α-Sialona组成,在晶界存在微量的结晶相和玻璃相.并进一步研究了α/β-Sialon陶瓷材料的疲劳寿命,实验证明,该材料的疲劳极限约为其静态强度的75%.  相似文献   

2.
自蔓延燃烧合成β-Si3N4棒晶   总被引:2,自引:0,他引:2  
采用自蔓延高温合成(SHS),在高压氮气中成功地合成了β-Si3N4棒晶,研究了添加不同量Y2O3对自蔓延燃烧合成β-Si3N4。棒晶长径比的影响.结果表明,Y2O3添加量有一个最佳范围,当Y2O3的添加量在2Wt%~5wt%时,棒晶生长均匀,长径比约为8.通过铜坩埚吸热淬火的方法,观察到β-Si3N4棒晶不同生长阶段的显微形貌,从而推测其生长机理为VLS和VS两种机理协同作用的结果.本文对β-Si3N4棒晶生长的反应历程也进行了阐述.  相似文献   

3.
冲击波合成立方氮化硅的烧结稳定性研究   总被引:1,自引:0,他引:1  
以冲击波合成的γ-Si3N4粉体为原料, Y2O3-Al2O3-La2O3体系作烧结助剂, 在5.7GPa、1370~1670K的高温高压条件下, 进行了γ-Si3N4粉体的烧结. 研究了不同烧结温度对γ-Si3N4稳定性、相对密度、力学性能及显微结构的影响. 结果表明: γ-Si3N4在 1420~1670K的条件下, 完全相变为β-Si3N4, 在1370K左右的条件下, 发生部分向β-Si3N4相变. 在5.7GPa, 1370K的条件下, 烧结样品的相对密度与维氏硬度分别为98.83%和21.09GPa.  相似文献   

4.
本文通过组成设计,以Si、Al、Y2O3为原料,Si3N4为稀释剂,利用自蔓延高温合成法(SHS)制备了Y-α/β-Sialon粉末;并利用XRD、化学分析法分别研究了α-Sialon简称α′)、β-Sialon简称β′)相组成和游离硅含量;且详细讨论了氮气压力、稀释剂含量对生成物Y-α/β-Sialon中的α′、β′相及残余硅含量的影响.  相似文献   

5.
用碳热还原法制备多孔氮化硅陶瓷   总被引:6,自引:0,他引:6  
以廉价的二氧化硅和活性碳为起始粉料, 用碳热还原法制备了高气孔率, 孔结构均匀的多孔氮化硅陶瓷.考察了二氧化硅粉末粒径对多孔氮化硅陶瓷微观组织和力学性能的影响. 借助X射线衍射(XRD), 扫描电子显微(SEM)和三点弯曲法对多孔氮化硅陶瓷的微观组织和力学性能进行了研究. XRD分析表明在烧结后的试样中, 除了微量的α-Si3N4相和晶界结晶相Y8Si4N4O14外, 其余的都是β-Si3N4相; SEM分析显示多孔氮化硅陶瓷是由柱状β-Si3N4晶粒和均匀的孔组成, 通过改变二氧化硅的粒径, 制备了不同孔隙率, 力学性能优异的多孔氮化硅陶瓷.  相似文献   

6.
研究了MgO-Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为A)、Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为B)及La2O3-Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为C)烧结助剂对Si3N4/BN层状复合陶瓷结构与性能的影响.研究表明:在相同的烧结工艺下,试样A、B、C的抗弯强度分别为700、630、610MPa,断裂功分别为2100、1600、3100J/m2.试样A、B以脆性断裂为主,裂纹偏转现象不明显,而试样C的载荷-位移曲线显示了明显的“伪塑性”特征,裂纹的偏转与扩展现象明显.试样A中Si3N4晶粒大小不均且长径比较小,而试样C中长柱状Si3N4晶粒发育完善,有较大的长径比.  相似文献   

7.
添加Y2O3-Dy2O3的AlN陶瓷的烧结特性及显微结构   总被引:5,自引:0,他引:5  
本文探索了以自蔓延高温(SHS)法合成并经抗水化处理的AlN粉为原料,以Y2O3-Dy2O3作为助烧结剂的AlN陶瓷的烧结特性及显微结构.结果表明,晶界处存在Dy4Al2O9、Y4Al2O9、DyAlO3、Dy2O3和DyN等第二相物质,随烧结温度变化,第二相的种类、数量和分布不同,显微结构也随之变化,从而影响AlN的热导率.在1850℃下,可获得热导率为148W/m·K的AlN陶瓷.  相似文献   

8.
原位增强SiC陶瓷   总被引:5,自引:0,他引:5  
实验采用β-SiC为起始原料,Y2O3、A12O3为烧结助剂,通过适当的烧结控制,获得了具有长柱状晶粒结构的α-SiC陶瓷,材料以液相烧结机制密化,在烧结过程中发生了与柱状晶形成有关的SiC晶粒3C→4H相变.材料的力学性能与晶粒的形态即长径比存在一定的依从关系,并显示出原位增强的特性.在较佳工艺条件下,材料的强度和韧性最大值分别达到620MPa、6.1MPa.m1/2.压痕裂纹扩展的途径表明,裂纹偏转和晶粒桥联是主要的增韧机理,这得益于其弱的界面结合.  相似文献   

9.
原位反应结合多孔Si3N4陶瓷的制备及其介电性能   总被引:2,自引:0,他引:2  
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

10.
降低陶瓷材料表面电荷的积累一直是俄歇分析技术能否成功应用于该类材料必须解决的首要问题. 通过实验认为:陶瓷材料试样减薄法可以用来降低表面电荷.采用这种方法,样品可分析区域大小仅依赖于电子束斑尺寸. 因而,用Microlab 310--F热场发射扫描俄歇微探针分析仪能在几十纳米的微区内,获取结构信息和除氢氦外的化学成分信息,突破了陶瓷材料在低电压、低电流下约几十微米的分析范围. 在此基础上,挑选了掺Dy的α-Sialon ,掺Y、La的α-Si3N4与以Al2O3为基体加入SiC晶须, 并通氮气氛处理的三种高性能陶瓷作为实验对象,分析和研究它们的晶粒、界面的成份、化学态和结构.发现α-Si3N4和α-Sialon陶瓷中的Si(LVV, KLL)峰位都会向低能端漂移,峰位分别为: 84eV 和1613eV. Si--N--O的结合态又使Si(LVV)峰继续漂移到80eV左右. 掺Y、La的α-Si3N4的玻璃相区, Si至少以两种或者两种以上的化学态存在.掺Dy的α-Sialon陶瓷的局部区域内有四种组分不同的固溶相及三种组分不同的晶间相. 另外, 在SiC与SiC-BN-C纤维补强复合陶瓷材料的断裂面,观察到从SiC基体拔出的纤维表面的大部分是残留的C层与C-BN交界层.  相似文献   

11.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨, 煅烧生成YAG粉体, 再真空烧结制备高致密YAG陶瓷. 采用DTA-TG对球磨Al-Y2O3粉体进行分析, 采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征. 实验表明: Al-Y2O3粉体在~569℃时, Al粉强烈氧化, 并与Y2O3粉反应, 600℃煅烧出现YAM相, 随煅烧温度升高出现YAP相, 1200℃煅烧生成YAG粉体. 成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷, YAG陶瓷相对密度可达98.6%, 晶粒生长均匀, 晶粒尺寸为810μm.  相似文献   

12.
研究了在α-Al2O3及其与尖晶石复合的陶瓷基体上多晶Na-beta-Al2O3膜的形成过程及其特性.结果表明,在单相α-Al2O3基体上形成的beta-Al2O3膜呈现不均匀的显微结构,异常长大的晶粒尺寸达到15μm.在复合相基体上制备的Na-beta-Al2O3膜晶粒尺寸得到了有效的控制,当其中相应的MgO含量为3wt%时,Na-beta-Al2O3的晶粒异常生长被完全抑制,最大晶粒尺寸仅2~3μm.动力学分析表明,复合基体表面Na-beta-Al2O3(Li,Mg)的形成过程中,Li的扩散和α-Al2O3→尖晶石的结构重排同时控制膜的生长过程.所制备的beta-Al2O3膜的钠离子导电性与beta-Al2O3陶瓷体相似,并取决于其中β-Al2O3和β″-Al2O3相的相对含量以及过剩MgAl2O4的含量.  相似文献   

13.
高温等静压烧结碳化硅基复相陶瓷的强化与增韧   总被引:7,自引:0,他引:7  
本文通过Si3N4、TiC及SiC晶须补强SiC基复相陶瓷的高温等静压烧结,研究了复相陶瓷的显微结构与力学性能,探讨了晶须及第二相颗粒对复相陶瓷的强化与增韧机理.结果表明,不同的补强颗粒及晶须在基体中的作用也不同,Si3N4的引入将在基体与第二相颗粒之间产生径向压应力,阻碍裂纹的扩展,TiC的引入将在基体与第二相颗粒之间产生径向张应力,诱导裂纹的偏转;SiC晶须的引入也将产生阻碍裂纹扩展的机制,从而达到SiC基复相陶瓷强化与增韧,改善其力学性能.  相似文献   

14.
Al2O3微粉的表面改性及表征   总被引:1,自引:0,他引:1  
以α-Al2O3微粉为基体,Y(NO3)3水溶液为包裹相,采用液相包裹法进行加钇颗粒表面改性.获得了表面均匀包裹Y2O3的α-Al2O3粉体.将此粉体与Al合金复合制备复合材料.复合材料组织更加均匀.对材料进行力学性能测试,结果表明:改性粉体对Al合金增强效果明显增加,抗拉强度提高27.2%;屈服强度提高33.1%,延伸率提高10.3%.  相似文献   

15.
研究新合成方法下得到超硬材料C3N4,利用黑索今(RDX)炸药作为高温、高压源,以双氰胺(C2H4N4)为主要前驱体. 通过扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)、X射线能谱分析仪(EDS)及红外光谱仪(FTIR)分别对输出压力为16GPa时制得样品的结构、形貌、价键特性和元素组成进行了分析与表征. 结果表明,XRD测试数据与理论计算值相符很好,样品中同时含有α、β、石墨相C3N4以及晶间相;样品中C、N元素质量比为1.00∶2.98,两种元素主要以CN形式成键;利用扫描电子显微镜观测到线度为2μm的六边形β-C3N4晶粒. 采用爆炸冲击合成方法合成出多晶C3N4粉末, 并对其合成机理进行了讨论.  相似文献   

16.
离子交换法制备波导放大器的磷酸盐铒玻璃研究   总被引:3,自引:0,他引:3  
研究了不同Al2O3、Na2O、La2O3、Y2O3及AlF3含量的磷酸盐铒玻璃的物理化学性质和光谱性质,通过恒温水浴失重测试的方法探讨了玻璃组分Al2O3、Na2O、La2O3、Y2O3及AlF3对磷酸盐玻璃化学稳定性的影响.结果表明,Al2O3含量增加,玻璃化学稳定性提高,添加少量的AlF3会降低玻璃的化学稳定性,与La2O3相比Y2O3对提高玻璃的热稳定性有益.通过对比不同组分玻璃样品的热性质、机械性质以及析晶、光谱性质的结果,初步得出了一个比较适于离子交换过程的磷酸盐铒玻璃成分.  相似文献   

17.
添加β-Si3N4棒晶对氮化硅陶瓷力学性能的影响   总被引:3,自引:0,他引:3  
将由自蔓延燃烧合成法制备的β—Si3N4棒晶加入到α-Si3N4起始原料中,研究了热压烧结氮化硅陶瓷力学性能的变化.随棒晶添加量的增加,材料的韧性提高,抗弯曲强度下降.与不加棒晶相比,加入8wt%的β-Si3N4棒晶可使陶瓷的韧性从4.0MPa·m1/2提高到6.7MPa·m1/2.断口形貌和压痕裂纹的显微结构观察表明,韧性的提高源于长柱状晶粒的拔出和裂纹的偏转.  相似文献   

18.
固相反应法制备Nd:YAG透明陶瓷   总被引:13,自引:0,他引:13  
以Y(NO3)3和NH3·H2O为原料,并在Y(NO3)3溶液中添加少量(NH4)2SO4,采用沉淀法制备出化学组成为Y2(OH)5(NO3)·nH2O的先驱沉淀物.先驱沉淀物在1100℃下煅烧4h,得到了平均粒径为60nm的氧化钇原料粉体.Y2O3粉体与Al2O3、Nd2O3超细粉球磨混合后,采用固相反应工艺,经1700℃真空烧结5h,制备出透明的Nd:YAG陶瓷,同时对Nd:YAG透明陶瓷的光学性能进行了研究.  相似文献   

19.
采用高温氮化合成的热化学方法制备了单晶的线型和带型α-Si3N4准一维结构.其中线型α-Si3N4准一维结构沉积在温度较低的反应区域(1200℃),而带型α-Si3N4准一维结构则沉积在高温原料源附近位置(1450℃).经XRD、SEM、TEM、HRTEM分析表明,制备的线型和带型α-Si3N4准一维结构均为单晶;线型α-Si3N4直径约为100~300nm,长为几十微米;而带型α-Si3N4厚约30nm,宽度在300nm~2μm之间,长度为几微米到几十微米.从晶体生长热力学及动力学方面讨论了线型和带型α-Si3N4准一维结构的生长过程和分区沉积的原因.结果表明,较高的温度和过饱和度有利于形成带型准一维结构.    相似文献   

20.
采用反向化学共沉淀法制备了热障涂层用La2O3-Y2O3-ZrO2(LaYSZ)原始复合粉末, 将原始粉末团聚造粒和热处理后得到适于等离子喷涂的团聚粉末. 采用电感耦合等离子体原子发射光谱(ICP-AES)、扫描电子显微镜(SEM)、霍尔流速计、X射线衍射(XRD)等方法分别对LaYSZ的化学组成、微观形貌、流动性和松装密度、高温相稳定性进行了研究. 结果表明: LaYSZ团聚粉末室温呈四方ZrO2结构, 在1150℃热处理2h后为致密的球形或近球形颗粒, 粉末流动性较好, 适于等离子喷涂. LaYSZ团聚粉末在1300℃热处理100h后仍保持单一的四方ZrO2晶型, 而8YSZ中有12mol%的四方相转变为单斜相; LaYSZ在1400℃热处理100h后, 单斜相含量为2mol%, 而8YSZ中单斜相含量达到47mol%, 表明La2O3、 Y2O3共掺杂稳定ZrO2较单一Y2O3 稳定ZrO2具有更好的高温相稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号