首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γ‐Fluoro‐α, β‐unsaturated carboxylic esters 7a, 7b and 7d and 4‐fluoro‐4‐phenylbut‐3‐enoic ester ( 8 ) are obtained by two alternative pathways from 2‐fluoro aldehydes 5a—d , either by Horner—Wadsworth—Emmons reaction or by Wittig reaction. The aldehydes 5a—d are prepared by Swern oxidation of the corresponding fluorohydrins 4a—d . These are available from α‐olefins by bromofluorination, bromineby‐acetate replacement and subsequent hydrolysis.  相似文献   

2.
The iron‐catalyzed δ‐addition of aryl‐Grignard reagents to α,β,γ,δ‐unsaturated sulfones proceeded in a regio‐ and stereoselective manner to give cis‐4‐aryl‐2‐alkenyl sulfones. Allylic alkylation of the resultant products was performed without isomerization of the cis‐olefin to give cis‐4‐aryl‐1,1‐dialkyl‐2‐alkenyl sulfones, which upon intramolecular Friedel–Crafts reaction with aluminum chloride gave 1,4‐dihydronaphthalenes having a quaternary carbon center.  相似文献   

3.
The cross‐aldol reaction between enolizable aldehydes and α‐ketophosphonates was achieved for the first time by using 9‐amino‐9‐deoxy‐epi‐quinine as the catalyst. β‐Formyl‐α‐hydroxyphosphonates were obtained in high to excellent enantioselectivities. The reaction works especially well with acetaldehyde, which is a tough substrate for organocatalyzed cross‐aldol reactions. The products were demonstrated to have anticancer activities.  相似文献   

4.
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry  相似文献   

5.
The palladium‐catalyzed, one‐pot arylative cyclization of 3‐(γ,δ‐disubstituted)allylidene‐2‐oxindoles afforded spirodihydronaphthalene‐2‐oxindole frameworks via an oxidative Heck arylation (Fujiwara–Moritani reaction), an allylic palladium migration, and an aryl C H bond functionalization/arylation cascade of reactions. This is a first example of the palladium‐catalyzed oxidative arylation and an aryl C H bond functionalization/arylation cascade reaction which involves an electrophilic arylative quenching of a π‐allylpalladium intermediate and a regio‐controlled aryl C H bond activation assisted by a weak palladium‐arene interaction.

  相似文献   


6.
An intramolecular imination/azidation sequence has been realized through the tetrakis(acetonitrile)copper(I) hexafluorophophate [Cu(CH3CN)4PF6]‐catalyzed reaction of γ,δ‐unsaturated ketone O‐benzoyl oximes with trimethylsilyl azide (TMSN3). The reaction proceeds via the copper‐mediated N O cleavage and subsequent C N forming 5‐exo cyclization. The thus formed intermediate is then azidated to afford the corresponding dihydropyrrole product. Preliminary mechanistic investigations suggest that the cyclization step does not involve a radical intermediate.

  相似文献   


7.
A regio‐ and enantioselective copper‐catalyzed 1,4‐conjugate addition of trimethylaluminium to linear δ‐aryl‐substituted α,β,γ,δ‐unsaturated alkyl ketones was developed. A series of γ,δ‐unsaturated alkyl ketones were obtained in good yields with high regio‐ and enantioselectivity (up to 88% ee and 96:4 dr). Expansion of the reaction scope to substrates containing aromatic heterocycles also afforded good yields and enantioselectivities (up to 91% ee) with very high regioselectivities, exclusively providing the single 1,4‐products.

  相似文献   


8.
The activation of C Cl bond of (Z)‐α‐chloroalkylidene‐β‐lactones and (E)‐α‐chloroalkylidene‐β‐lactams via the Suzuki cross‐coupling reaction is reported in this paper. Alkyl, heteroaromatic, substituted phenyl‐ and alkenylboronic acids can be coupled with a wide variety of α‐chloroalkylidene‐β‐lactones and β‐lactams in excellent yields within a short period of time. The cross‐coupling reaction of optically active substrates leads to the optically active compounds without racemization of the corresponding chiral center.  相似文献   

9.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

10.
Glycine‐ɛ‐caprolactone‐based and α‐alanine‐ɛ‐caprolactone‐based polyesteramides with a strong tendency to form alternating sequences (degree of randomness = 1.64 and 1.31) were synthesized by melt polycondensation of intermediate hydroxy‐ and ethyl ester‐terminated amides. These intermediates were synthesized by the reaction of equimolar amounts of ɛ‐caprolactone and glycine or L‐α‐alanine ethyl esters in mild conditions. The structure and microstructure of these polyesteramides are discussed on the basis of an in‐depth nuclear magnetic resonance study. Both polyesteramides are semi‐crystalline, but the glycine‐based one presents the highest melting enthalpy. This polyesteramide also exhibits higher Young's modulus and stress at break than its α‐ and β‐alanine counterparts. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44220.  相似文献   

11.
An enantioselective aza‐Friedel–Crafts reaction of indoles with γ‐hydroxy‐γ‐lactams using a chiral phosphoric acid catalyst is reported. The approach described herein provides an efficient access to 5‐indolylpyrrolidinones in good to quantitative yields and excellent enantioselectivities (up to >99% ee). The results suggest that the reaction may proceed via N‐acyliminium intermediates associated with the chiral phosphoric acid anion.  相似文献   

12.
Crosslinked polyacrylamide beads were irradiated in air with a Co60 γ‐radiation source. The preirradiated beads were graft‐copolymerized through heating with 4‐vinylpyridine in the presence of benzoyl peroxide. Grafting was studied as a function of various reaction parameters and was determined from the increase in the weight of the original polymer and the estimation of pyridine pendants in the homopolymer‐free graft copolymer. Although making the polymer basic in character, this modification retained the hydrophilic nature of polyacrylamide. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2613–2620, 2002  相似文献   

13.
Efficient one‐step syntheses of α,β‐ and β,β‐dihaloenones were achieved by ruthenium(II)‐catalyzed reactions between cyclic or acyclic diazodicarbonyl compounds and oxalyl chloride or oxalyl bromide in moderate to good yields. This methodology offers several significant advantages, which include ease of handling, mild reaction conditions, one‐step reaction, and the use of an effective and non‐toxic catalyst. The synthesized compounds were further transformed into highly functionalized novel molecules bearing aromatic rings on the enone moiety using the Suzuki reaction.

  相似文献   


14.
Compound 20 , a pseudoenantiomer of β‐isocupreidine (β‐ICD), was synthesized from quinine employing a Barton reaction of nitrosyl ester 13 and acid‐catalyzed cyclization of carbinol 18 as key steps. The Baylis–Hillman reaction of benzaldehyde, p‐nitrobenzaldehyde, and hydrocinnamaldehyde with 1,1,1,3,3,3‐hexafluoroisopropyl acrylate (HFIPA) using 20 as a chiral amine catalyst was found to give the corresponding S‐enriched adducts in high optical purity (>91% ee) in contrast to the β‐ICD‐catalyzed reaction which affords R‐enriched adducts. This result suggests that compound 20 can serve as an enantiocomplementary catalyst of β‐ICD in the asymmetric Baylis–Hillman reaction of aldehydes with HFIPA.  相似文献   

15.
The direct organocatalytic enantioselective epoxidation of α,β‐unsaturated aldehydes with different peroxides is presented. Proline, chiral pyrrolidine derivatives, and amino acid‐derived imidazolidinones catalyze the asymmetric epoxidation of α,β‐unsaturated aldehydes. In particular, protected commercially available α,α‐diphenyl‐ and α,α‐di(β‐naphthyl)‐2‐prolinols catalyze the asymmetric epoxidation reactions of α,β‐unsaturated aldehydes with high diastereo‐ and enantioselectivities to furnish the corresponding 2‐epoxy aldehydes in high yield with up to 97:3 dr and 98 % ee. The use of non‐toxic catalysts, water and hydrogen peroxide, urea hydroperoxide or sodium percarbonate as the oxygen sources could make this reaction environmentally benign. In addition, one‐pot direct organocatalytic asymmetric tandem epoxidation‐Wittig reactions are described. The reactions were highly diastereo‐ and enantioselective and provide a rapid access to 2,4‐diepoxy aldehydes. Moreover, a highly stereoselective one‐pot organocatalytic asymmetric cascade epoxidation‐Mannich reaction, which proceeds via the combination of iminium and enamine activation, is presented. The mechanism and stereochemistry of the amino acid‐ and chiral pyrrolidine‐catalyzed direct asymmetric epoxidation of α,β‐unsaturated aldehydes are also discussed.  相似文献   

16.
The Lewis base‐organocatalyzed asymmetric hydrosilylation of α‐acetamido‐β‐enamino esters was investigated. Among various chiral Lewis base catalysts, a novel catalyst derived from L ‐serine was found to be the most efficient one which can promote the reaction to afford a series of α,β‐diamino acid derivatives with high yields (up to 99%), excellent enantioselectivities (up to 98% ee) and moderate diastereoselectivities (up to 80:20 dr). The absolute configuration of one of the products was determined by the X‐ray crystallographic analysis. In addition, the mechanism and the transition state of the reaction were proposed.  相似文献   

17.
The quantitative syntheses of α‐bis and α,ω‐tetrakis tertiary diamine functionalized polymers by atom transfer radical polymerization (ATRP) methods are described. A tertiary diamine functionalized 1,1‐diphenylethylene derivative, 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1), was evaluated as a unimolecular tertiary diamine functionalized initiator precursor as well as a functionalizing agent in ATRP reactions. The ATRP of styrene, initiated by a new tertiary diamine functionalized initiator adduct (2), affords the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3). The tertiary diamine functionalized initiator adduct (2) was prepared in situ by the reaction of (1‐bromoethyl)benzene with 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) in the presence of a copper (I) bromide/2,2′‐bipyridyl catalyst system. The ATRP of styrene proceeded via a controlled free radical polymerization process to afford quantitative yields of the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene derivative (3) with predictable number‐average molecular weight (Mn) and narrow molecular weight distribution (Mw/Mn) in a high initiator efficiency reaction. The polymerization process was monitored by gas chromatography analysis. Quantitative yields of α,ω‐tetrakis(4‐dimethylaminophenyl) functionalized polystyrene (4) were obtained by a new post ATRP chain end modification reaction of α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3) with excess 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1). The tertiary diamine functionalized initiator precursor 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) and the different tertiary amine functionalized polymers were characterized by chromatography, spectroscopy and non‐aqueous titration measurements. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

19.
A reaction sequence furnishing cyclic β‐[η5‐C5H5(CO)2Fe]‐substituted enals 5 starting from β‐keto esters 1 is described. Organolithiums were found to react smoothly with the iron‐substituted enals yielding α,β‐butenolides 6 by an intramolecular cyclocarbonylation of the lithiumalkoxide initially formed. The influence of e.g. the reaction temperature and the solvent on the reaction cascade is discussed. A reaction mechanism is proposed.  相似文献   

20.
The formation of 4‐alkoxy‐2(5H)‐furanones was achieved via tandem alkoxylation/lactonization of γ‐hydroxy‐α,β‐acetylenic esters catalyzed by 2 mol% of [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold bis(trifluoromethanesulfonyl)imidate [Au(IPr)(NTf2)]. The economic and simple procedure was applied to a series of various secondary propargylic alcohols allowing for yields of desired product of up to 95%. In addition, tertiary propargylic alcohols bearing mostly cyclic substituents were converted into the corresponding spiro derivatives. Both primary and secondary alcohols reacted with propargylic alcohols at moderate temperatures (65–80 °C) in either neat reactions or using 1,2‐dichloroethane as a reaction medium allowing for yields of 23–95%. In contrast to [Au(IPr)(NTf2)], reactions with cationic complexes such as [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine](acetonitrile)gold tetrafluoroborate [Au(IPr)(CH3CN)][BF4] or (μ‐hydroxy)bis{[2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold} tetrafluoroborate or bis(trifluoromethanesulfonyl)imidate – [{Au(IPr)}2(μ‐OH)][X] (X=BF4, NTf2) – mostly stop after the alkoxylation. Analysis of the intermediate proved the exclusive formation of the E‐isomer which allows for the subsequent lactonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号