首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and detailed characterization of racemic 3‐methyl‐1,4‐dioxan‐2‐one (3‐MeDX) are reported. The bulk ring‐opening polymerization of 3‐MeDX, to yield a poly(ester‐ether) meant for biomedical applications, in the presence of various initiators such as tin(II) octanoate, tin(II) octanoate/n‐butyl alcohol, aluminium tris‐isopropoxide and an aluminium Schiff base complex (HAPENAlOiPr) under varying experimental conditions is here detailed for the first time. Polymerization kinetics were investigated and compared with those of 1,4‐dioxan‐2‐one. The studies reveal that the rate of polymerization of 3‐MeDX is less than that of 1,4‐dioxan‐2‐one. Experimental conditions to achieve relatively high molar masses have been established. Thermodynamic parameters such as enthalpy and entropy of 3‐MeDX polymerization as well as ceiling temperature have been determined. Poly(D ,L ‐3‐MeDX) is found to possess a much lower ceiling temperature than poly(1,4‐dioxan‐2‐one). Poly(D ,L ‐3‐MeDX) was characterized using NMR spectroscopy, matrix‐assisted laser desorption ionization mass spectrometry, size exclusion chromatography and differential scanning calorimetry. This polymer is an amorphous material with a glass transition temperature of about ?20 °C. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Carbonate on polymer is a valuable solid supported reagent (SSR) to promote, under eco‐friendly conditions, the preparation of 2H‐1,4‐benzoxazin‐2‐one derivatives starting from β‐nitroacrylates and aminophenols via a domino process.  相似文献   

3.
The objective of this study was to prepare high molecular weight poly(ester‐anhydride)s by melt polycondensation. The polymerization procedure consisted of the preparation of carboxylic acid terminated poly(?‐caprolactone) prepolymers that were melt polymerized to poly(?‐caprolactone)s containing anhydride functions along the polymer backbone. Poly(?‐caprolactone) prepolymers were prepared using either 1,4‐butanediol or 4‐(hydroxymethyl)benzoic acid as initiators, yielding hydroxyl‐terminated intermediates that were then converted to carboxylic acid‐terminated prepolymers by reaction with succinic anhydride. Prepolymers were then allowed to react with an excess of acetic anhydride, followed by subsequent polycondensation to resulting high molecular weight poly(ester‐anhydride)s. Upon coupling of prepolymers, size exclusion chromatography analyses showed an increase from 3600 to 70,000 g/mol in number‐average molecular weight (Mn) for the 1,4‐butanediol initiated polymer, and an increase from 7200 to 68,000 g/mol for the 4‐(hydroxymethyl)benzoic acid‐initiated polymer. 4‐Hydroxybenzoic acid and adipic acid were also used as initiators in the preparation of poly(?‐caprolactone) prepolymers. However, with these initiators, the results were not satisfactory. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 176–185, 2001  相似文献   

4.
A series of novel thermoplastic elastomers, based on poly(butylene terephthalate) (PBT) and polycaprolactone‐block‐polydimethylsiloxane‐block‐polycaprolactone (PCL‐PDMS‐PCL), with various mass fractions, were synthesized through melt polycondensation. In the synthesis of the poly(ester‐siloxane)s, the PCL blocks served as a compatibilizer for the non‐polar PDMS blocks and the polar comonomers dimethyl terephthalate and 1,4‐butanediol. The introduction of PCL‐PDMS‐PCL soft segments resulted in an improvement of the miscibility of the reaction mixture and therefore in higher molecular weight polymers. The content of hard PBT segments in the polymer chains was varied from 10 to 80 mass%. The degree of crystallinity of the poly(ester‐siloxane)s was determined using differential scanning calorimetry and wide‐angle X‐ray scattering. The introduction of PCL‐PDMS‐PCL soft segments into the polymer main chains reduced the crystallinity of the hard segments and altered related properties such as melting temperature and storage modulus, and also modified the surface properties. The thermal stability of the poly(ester‐siloxane)s was higher than that of the PBT homopolymer. The inclusion of the siloxane prepolymer with terminal PCL into the macromolecular chains increased the molecular weight of the copolymers, the homogeneity of the samples in terms of composition and structure and the thermal stability. It also resulted in mechanical properties which could be tailored. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Enzymatic degradation of a series of polyesters prepared from 1,4:3.6‐dianhydro‐D ‐glucitol (1) and aliphatic dicarboxylic acids of the methylene chain length ranging from 2 to 10 were examined using seven different enzymes. Enzymatic degradability of these polyesters as estimated by water‐soluble total organic carbon (TOC) measurement is dependent on the methylene chain length (m) of the dicarboxylic acid component for most of the enzymes examined. The most remarkable substrate specificity was observed for Rhizopus delemar lipase, which degraded polyester derived from 1 and suberic acid (m = 6) most readily. In contrast, degradation by Porcine liver esterase was nearly independent of the structure of the polyesters. Enzymatic degradability of the polyesters based on three isomeric 1,4:3.6‐dianhydrohexitols and sebacic acid was found to decrease in the order of 1, 1,4:3.6‐dianhydro‐D ‐mannitol (2), and 1,4:3.6‐dianhydro‐L ‐iditol (3). Structural analysis of water‐soluble degradation products formed during the enzymatic hydrolysis of polyester 5g derived from 1 and sebacic acid has shown that the preferential ester cleavage occurs at the O(5) position of 1,4:3.6‐dianhydro‐D ‐glucitol moiety in the polymer chain by enzymes including Porcine pancreas lipase, Rhizopus delemar lipase, and Pseudomonas sp. lipase. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 338–346, 2000  相似文献   

6.
In this contribution, the facile synthesis of two new polymer‐supported 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) catalysts and their application in the catalytic oxidation of alcohols to carbonyl compounds are described. For attachment of the TEMPO group to the polymer an isocyanate functionalized polymer is chosen. This new approach facilitates the synthesis in comparison with previously existing methods which generally require deprotonation of TEMPO prior to reaction with the polymer. Following this approach, polyurethane (PU)‐ and polystyrene (PS)‐based TEMPO catalysts are prepared in a one‐step reaction from commercially available compounds. Both polymer‐supported catalysts showed promising yields for a variety of substrates using inorganic and/or organic co‐oxidants in biphasic and/or monophasic systems. The recyclability of the corresponding catalysts was studied in repetitive batch experiments using filtration or distillation depending on the support type. Furthermore, application of the homogeneous polyurethane‐supported TEMPO for the selective oxidation of benzyl alcohol in a continously operated membrane reactor is demonstrated.  相似文献   

7.
A novel diimidodialcohol monomer, 1,4‐bis[2′‐trifluoromethyl‐4′‐(4″‐glycolformate)‐ trimellitimidophenoxy]benzene (BGTB), was synthesized and characterized. It was reacted with isophthalic acid, maleic anhydride and propylene glycol to produce a novel unsaturated poly(ester‐imide) (BGTB‐UPEI) with imide and trifluoromethyl groups in the polymer backbone. The BGTB‐UPEI resin was diluted with reactive monomer (styrene) to give a low‐viscous poly(ester‐imide)/styrene (BGTB‐UPEI/St) mixed solution, which was then thermally cured to yield thermosetting BGTB‐UPEI/St composite. The effect of processing parameters such as the curing temperature and curing time, reactive monomer concentration and initiator amount on the curing reaction was systematically investigated. Experimental results indicated that the thermally cured BGTB‐UPEI/St composite exhibited much better thermal, mechanical, electrical insulating properties and chemical resistance than the standard unsaturated polyester/polystyrene composite. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
A new catalyst system is developed for regiocontrolled synthesis of poly(2,5‐dialkyl‐1,4‐phenylene oxide)s by oxidative coupling polymerization of 2,5‐dialkylphenol. The treatment of the α‐benzoin oxime with manganese chloride in methanol under basic condition led to the formation of manganese benziloxime complex in which α‐benzoin oxime was converted to benziloxime and coordinated to manganese as bidentate ligands. The polymerizations were conducted in toluene using manganese benziloxime complex and dibutylamine in a continuous flow of oxygen, and the structures, properties of the catalyst, and polymers were studied by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC). The catalyst showed high regioselectivity and reasonably good yields to afford the poly(2,5‐dimethyl‐1,4‐phenylene oxide)s with 1,4‐C‐O linkage structure which possessed melting point higher than the poly(p‐phenylene sulfide) or type II liquid crystalline polymer. The regioselectivity was enhanced when employing molecular sieves‐supported manganese catalyst system at 90°C and the crystallinity of poly(2,5‐dimethyl‐1,4‐phenylene oxide)s was estimated by wide‐angle X‐ray scattering (WAXS) and DSC. The crystallinity was calculated about 23.7% and a heat‐reversible melting and crystallization behavior occurred at 327.8 and 306.8°C, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Polymer‐supported quaternary ammonium salts were prepared, and their applications as phase‐transfer catalysts in aqueous organic systems were investigated. The polymer‐bound phase‐transfer catalysts were prepared with polystyrene resins crosslinked with the bifunctional monomers divinylbenzene and 1,4‐butanediol dimethacrylate. The polymers were functionalized with chloromethyl groups and quaternized with trialkylamines having different alkyl chains. The obtained phase‐transfer catalysts were characterized with IR spectroscopy and elemental analysis. The thermal stability was also determined by the thermogravimetric method. The catalytic properties of the phase‐transfer catalysts were studied in halogen‐exchange reactions. The effects of the nature and extent of crosslinking of the polymer support, the alkyl groups of the trialkylamine, and the reaction conditions were investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 2009  相似文献   

10.
A set of segmented poly(ester‐urethane)s were prepared from diisocyanates HDI or MDI and using 1,4‐butanediol and D ‐glucose‐derived cyclic diols (1,4 : 3,6‐dianhydro‐D ‐glucitol (isosorbide) or 2,4;3,5‐di‐O‐methylidene‐D ‐glucitol (gludioxol) or mixtures of them) as extenders. Hydroxyl end‐capped polycaprolactone with a molecular weight of 3000 g·mol?1 was used as soft segment. Two polymerization methods, in solution and in bulk, were applied for the synthesis of these poly(ester‐urethane)s. The influence of the preparation procedure and composition in cyclic extender on synthesis results, structure, and properties of the novel poly(ester‐urethane)s was comparatively evaluated and discussed. The effect of replacement of 1,4‐butanediol by isosorbide or gludioxol on hydrodegradability was also assessed; the hydrolysis rate increased noticeably with the presence of glucitol derived units, although degradation of the polymers took place essentially by hydrolysis of the polyester soft segment. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A novel luminescent conjugated polymer, poly[{9‐(α‐naphthyl)‐3,6‐divinylenecarbazolylene}‐altco‐(1,4‐phenylene)] (PNVCP), bearing alternated 9‐(α‐naphthyl)‐carbazole and benzene units, was synthesized via a Wittig–Horner reaction. The solubility, thermal, and optical properties were investigated. It was soluble in common organic solvents, such as tetrahydrofuran and 1,2‐dichlororoethane. Thermogravimetric analysis and differential scanning calorimetry showed that the conjugated polymer exhibited good thermal stability up to 496°C with a glass‐transition temperature higher than 110°C. The photoluminescence properties were studied. The polymer emits blue light and the quantum yield is 93% in solution. The emission spectra exhibited an obvious solvent effect. With the increase of the polarity of the solvents, the fluorescence spectra changed obviously and appeared to be redshifted at room temperature. The redshift was more obvious in aromatic solvents than in aliphatic solvents. When N,N‐dimethylaniline was gradually added into the solution of the conjugated polymer, the emission intensity of the fluorescence decreased. In comparison, the emission intensity of the polymer showed invariability when 1,4‐dicyanobenzene was added into the polymer solution. Moreover, the fluorescence of the polymer could be effectively quenched by fullerene. Overall, the synthesized polymer is a potential candidate material for fabrication of polymeric light‐emitting devices. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 923–927, 2006  相似文献   

12.
A chiral conjugated polymer can be obtained by the polymerization of (S)‐6,6′‐dibromo‐2,2′‐binaphtho‐20‐crown‐6 and 1,4‐divinyl‐2,5‐dibutoxybenzene via a palladium‐catalyzed Heck cross‐coupling reaction. The chiral conjugated polymer shows strong green‐blue fluorescence. The responsive properties of the chiral polymer to metal ions were investigated using fluorescence and UV‐visible absorption spectra. K+, Pb2+, Cd2+ and Ba2+ enhance the fluorescence of the polymer; in contrast, Hg2+ causes effective quenching of the fluorescence of the polymer. The obvious influences on the fluorescence indicate that the 2,2′‐binaphtho‐20‐crown‐6 moiety plays an important role in fluorescence recognition for Hg2+ due to the effective photo‐induced electron transfer or charge transfer between the conjugated polymer backbone and the receptor ions. The responsive properties of the polymer to metal ions show that the chiral conjugated polymer incorporating 2,2′‐binaphtho‐20‐crown‐6 moieties in the main‐chain backbone as recognition sites can act as an excellent fluorescent probe for the sensitive detection of Hg2+. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Weatherable semicrystalline polyesters based on 1,4‐cyclohexanedimethanol, 1,4‐cyclohexanedicarboxylic acid (CHDA) or dimethyl 1,4‐cyclohexane dicarboxylate (DMCD) can be prepared under normal melt‐phase conditions, using titanium tetrabutoxide as catalyst. The effect of monomer ratio, reaction temperature and catalyst loading on the final polymer properties was studied. Under the proper polymerization conditions, poly(1,4‐cyclohexylenedimethylene‐1,4‐cyclohexanedicarboxylate) polymers with high molecular weight can be obtained. During polymerization, isomerization can occur towards the thermodynamically stable cistrans ratio of 34–66 mol%. Carboxylic acid end groups can catalyze the isomerization and therefore the polymerization is more critical starting from CHDA rather than DMCD. Moreover, temperature control becomes a key factor to avoid or to limit isomerization. The study of the isomerization of the different monomers permitted a better understanding of the isomerization and therefore of the polymerization process. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
The presence of a bulky substituent at the 2‐position of 1,3‐butadiene derivatives is known to affect the polymerization behavior and microstructure of the resulting polymers. Free‐radical polymerization of 2‐triethoxysilyl‐1,3‐butadiene ( 1 ) was carried out under various conditions, and its polymerization behavior was compared with that of 2‐triethoxymethyl‐ and other silyl‐substituted butadienes. A sticky polymer of high 1,4‐structure ( ) was obtained in moderate yield by 2,2′‐azobisisobutyronitrile (AIBN)‐initiated polymerization. A smaller amount of Diels–Alder dimer was formed compared with the case of other silyl‐substituted butadienes. The rate of polymerization (Rp) was found to be Rp = k[AIBN]0.5[ 1 ]1.2, and the overall activation energy for polymerization was determined to be 117 kJ mol?1. The monomer reactivity ratios in copolymerization with styrene were r 1 = 2.65 and rst = 0.26. The glass transition temperature of the polymer of 1 was found to be ?78 °C. Free‐radical polymerization of 1 proceeded smoothly to give the corresponding 1,4‐polydiene. The 1,4‐E content of the polymer was less compared with that of poly(2‐triethoxymethyl‐1,3‐butadiene) and poly(2‐triisopropoxysilyl‐1,3‐butadiene) prepared under similar conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
We have successfully developed a single nucleotide (adenosine 5′‐diphosphate)‐catalyzed enantioselective direct reductive amination of aldehydes and ketones using a Hantzsch ester as reducing agent. The process is a simple, efficient and a real mimic of the NADH reduction approach for the synthesis of structurally diverse amines. This reaction is the first report demonstrating the ability of a single nucleotide as catalyst and one of the most genuine biomimetic reactions of organic chemistry.  相似文献   

16.
An efficient preparation of a new recyclable polymer‐supported oxidizing agent based on N‐phenylsulfonyloxaziridine has been developed. This new polymer‐supported oxidant was shown to effect a clean and selective conversion of a range of sulfides, selenides, amines, phosphines and enolates to the corresponding sulfoxides, selenoxides, N‐oxides, phosphine oxides and α‐hydroxy carbonyl compounds. It also enabled tetrahydrobenzimidazoles to be oxidatively rearranged to spiro‐fused 5‐imidazolones. Recycling of the polymer‐supported oxidant is possible with minimal loss of activity after several reoxidations.  相似文献   

17.
In this investigation, a chiral poly) ester‐imide) (PEI) via direct polyesterification of N,N′‐(pyromellitoyl)‐bis‐(L ‐tyrosine dimethyl ester) and N‐trimellitylimido‐L ‐methionine was prepared using the tosyl chloride/pyridine/N,N′‐dimethylformamide system as a condensing agent. This approach allows the insertion of two natural amino acids into the polymer backbone and the creation of a bioactive polymer. From the chemical point of view, the ester groups impart to the polymer's main and side chain increased sensibility to hydrolysis that can cause chain breaking. Therefore, this polymer is expected to be biodegradable and could be classified as an eco‐friendly polymer. The polymer also had a useful level of thermal stability associated with excellent solubility. PEI/zinc oxide bionanocomposites were subsequently prepared by an ultrasonic method as a simple and inexpensive route, using ZnO nanoparticles (ZnO‐NPs) modified by 3‐aminopropyltriethoxylsilane (KH550) as a coupling agent. The structure and properties of the obtained BNC polymers were confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The direct proofs for the formation of the true BNC polymers were provided by TEM. Also, the morphology study of the synthesized polymer‐based BNCs showed well‐dispersed ZnO‐NPs in the polymer matrix by FE‐SEM analysis. TGA studies indicated that an increase of the NP content led to an enhancement of the thermal stability of the new BNC polymers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
A series of novel ternary‐copolymer of fluorinated polyimides (PIs) were prepared from 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (pBATB), commercially available aromatic dianhydrides, and aromatic diamines via a conventional two‐step thermal or chemical imidization method. The structures of all the obtained PIs were characterized with FTIR, 1H‐NMR, and element analysis. Besides, the solubility, thermal stability, mechanical properties, and moisture uptakes of the PIs were investigated. The weight‐average molecular weight (Mw) and the number‐average molecular weight (Mn) of the PIs were determined using gel‐permeation chromatography (GPC). The PIs were readily dissolved not only in polar solvents such as DMF, DMAc, and NMP, but also in some common organic solvents, such as acetic ester, chloroform, and acetone. The glass transition temperatures of these PIs ranged from 201 to 234°C and the 10% weight loss temperatures ranged from 507 to 541°C in nitrogen. Meanwhile, all the PIs left around 50% residual even at 800°C in nitrogen. The GPC results indicated that the PIs possessed moderate‐to‐high number‐average molecular weight (Mn), ranging from 9609 to 17,628. Moreover, the polymer films exhibited good mechanical properties, with elongations at break of 8–21%, tensile strength of 66.5–89.8 MPa, and Young's modulus of 1.04–1.27 GPa, and low moisture uptakes of 0.54–1.13%. These excellent combination properties ensure that the polymer could be considered as potential candidates for photoelectric and microelectronic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A copolymer of dendronized poly(p‐phenylene vinylene) (PPV), poly{2‐[3′,5′‐bis (2′‐ethylhexyloxy) bnenzyloxy]‐1,4‐phenylene vinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene] (BE‐co‐MEH–PPV), was synthesized with the Gilch route to improve the electroluminescence and photovoltaic properties of the dendronized PPV homopolymer. The polymer was characterized by ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, and electrochemical cyclic voltammetry and compared with the homopolymers poly{2‐[3′, 5′‐bis(2‐ethylhexyloxy) benzyloxy‐1,4‐phenylene vinylene} (BE–PPV) and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH–PPV). Polymer light‐emitting diodes based on the polymers with the configuration of indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/polymer/Ca/Al were fabricated. The electroluminescence efficiency of BE‐co‐MEH–PPV reached 1.64 cd/A, which was much higher than that of BE–PPV (0.68 cd/A) and a little higher than that of MEH–PPV (1.59 cd/A). Photovoltaic properties of the polymer were studied with the device configuration of ITO/PEDOT : PSS/polymer : [6,6J‐phenyl‐C61‐butyric acid methyl ester] (PCBM)/Mg/Al. The power conversion efficiency of the device based on the blend of BE‐co‐MEH–PPV and PCBM with a weight ratio of 1 : 3 reached 1.41% under the illumination of air mass 1.5 (AM1.5) (80 mW/cm2), and this was an improvement in comparison with 0.24% for BE–PPV and 1.32% for MEH–PPV under the same experimental conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Polythiophenes with ester substituents at the 3‐position of the thiophene ring were synthesized by ferric chloride oxidative polymerization. The polythiophenes are partially soluble in tetrahydrofuran, and these solutions were used to characterize the polythiophenes using Fourier transform infrared, 1H NMR, UV‐visible and fluorescence spectroscopy, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry and cyclic voltammetry. The electrochemical band gap of the polymers is in the range 1.6–2.3 eV. The effect of the various substituents on the fluorescence behaviour was studied in detail. The quinolinyl‐moiety‐containing polythiophene ester has the highest fluorescence quantum yield. The incorporation of Al3+ and Zn2+ ions increases greatly the fluorescence intensity. The electroluminescence properties of the polymers were evaluated with a device configuration of ITO/PEDOT:PSS/polymer/LiF/Al. The polymers show a yellow emission in electroluminescence spectra. The results suggest that the quinoline‐containing ester‐substituted polythiophene is a promising electronic and optoelectronic material. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号