首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and concise asymmetric hydrogenation of acrylate esters promoted by the cationic ruthenium monohydride complex [Ru(H)(η6‐cot)SYNPHOS]+BF4 is reported. A full investigation of the effects of catalyst precursors, solvents, temperature, hydrogen pressure, substrates as well as steric and electronic properties of ligands was carried out. The corresponding valuable Roche ester derivatives were obtained in good to excellent isolated yields and high enantioselectivities under mild conditions. The robustness and practicability of this highly enantioselective hydrogenation was demonstrated by the synthesis of the 3‐hydroxy‐2‐methylpropanoic acid tert‐butyl ester on a multigram scale, resulting in excellent yield and ee up to 94%.  相似文献   

2.
MaxPHOS is an active and robust P‐stereogenic ligand for asymmetric catalysis. The presence of an  NH bridge between the two phosphine moieties allows the NH/PH tautomerism to take place. The neutral ligand, in which the NH form predominates, is an air‐sensitive compound. However, protonation of MaxPHOS leads to the stable PH form of the ligand, in which the overall positive charge is distributed on both P centers. This protonation turns the MaxPHOS⋅HBF4 salt 3 into an air‐stable compound both in the solid state and in solution. The salt 3 is also a convenient precursor for the preparation of rhodium(I) complexes by direct ligand exchange with the complex [Rh(acac)(cod)]. Finally, the corresponding rhodium(I)‐MaxPHOS complex was tested in the asymmetric hydrogenation of a wide range of substrates. The complex proved to be a highly selective and robust system in these reactions.

  相似文献   


3.
A racemic 1,1′ ‐ spirobitetralin‐8,8′‐diol (SBITOL) was conveniently synthesized from 3‐methoxybenzaldehyde in 26 % yield over 9 steps and resolved via its bis‐(S)‐camphorsulfonates. The corresponding chiral spirobitetraline monophosphoramidite ligands have been prepared and their rhodium complexes were applied in the asymmetric hydrogenation of dehydroamino esters with good to excellent enantioselectivities (up to 99.3 % ee).  相似文献   

4.
The introduction of 1,2‐bis[(o‐anisyl)(phenyl)phosphino]ethane (DiPAMP) as a P‐stereogenic ligand for rhodium(I)‐catalyzed hydrogenation by Knowles et al. came after their evaluation of several diphosphines. However, no in‐depth study was carried out on incorporating various substituents on its P‐o‐anisyl groups. In this work, we have prepared a large series of enantiopure and closely related DiPAMP analogues possessing various substituents (MeO, TMS, t‐Bu, Ph, fused benzene ring) on the o‐anisyl rings. The new ligands were evaluated in rhodium‐catalyzed hydrogenation of several model substrates: methyl α‐acetamidoacrylate, methyl (Z)‐α‐acetamidocinnamate, methyl (Z)‐β‐acetamidocrotonate, dimethyl itaconate, and atropic acid. They displayed enhanced activities and increased enantioselectivities, particularly the P‐(2,3,4,5‐tetra‐MeO‐C6H)‐substituted ligand (4MeBigFUS). Interestingly enough, 88% ee was obtained in the hydrogenation of atropic acid using the Rh‐(4MeBigFUS) catalyst under mild conditions (10 bar H2, room temperature) versus 7% ee using Rh‐DiPAMP. Conversely, the ligand possessing P‐(2,6‐di‐MeO‐C6H3) groups proved to slow down considerably the hydrogenation. X‐Ray structures of their corresponding Rh complexes are presented and discussed.  相似文献   

5.
Optically pure (S,S)‐1,2‐bis[(o‐alkylphenyl)phenylphosphino]ethanes 1a–d were prepared in four steps from phenyldichlorophosphine via phosphine‐boranes as the intermediates. The rhodium complexes 5a–d of these diphosphines were used for the asymmetric hydrogenations of α‐(acylamino)acrylic derivatives including β‐disubstituted derivatives. Markedly high enantioselectivity (78–>99%) was observed for the reduction of β‐monosubstituted derivatives. β‐Disubstituted derivatives were also reduced in considerably high enantioselectivity (up to 90%). The single crystal X‐ray analysis of the rhodium complex 5c of (S,S)‐1,2‐bis[phenyl(5′,6′,7′,8′‐tetrahydronaphthyl)phosphino]ethane ( 1c) revealed its δ‐type structure with face orientation of the two tetrahydronaphthyl groups and edge orientation of the two phenyl groups. This conformation corresponds to that of the rhodium complex of 1,2‐bis[(o‐methoxyphenyl)phenylphosphino]ethane (DIPAMP); the rhodium complex of (R,R)‐DIPAMP, whose chirality at phosphorus is opposite that of 5c , exhibits a λ‐type structure with the face orientation of the two o‐methoxyphenyl groups and the edge orientation of the two phenyl groups. The conformational similarity of these rhodium complexes as well as the stereochemical outcome in the asymmetric hydrogenations means that the coordinative interaction of the methoxy group of DIPAMP with rhodium metal is not the main factor that affects asymmetric induction.  相似文献   

6.
The catalytic hydrogenation of three pro‐chiral substrates methyl Z‐α‐acetamidocinnamate (MAC), methyl 2‐acetamidoacrylate (M‐Acrylate) and ethyl 4‐methyl‐3‐acetamido‐2‐propanoate (E‐EMAP) with rhodium precursors complexed with chiral diphosphines is reported at 1–30 bar hydrogen pressure. A library of 56 chiral diphosphines, including 23 BINAP derivatives, 7 JOSIPHOS, 5 BIPHEP, 3 DUPHOS derivatives, and 18 other ligands, was used. While it was generally accepted that high hydrogen pressure would result in lower ees, it is now demonstrated on a statistical basis that an equivalent distribution between beneficial and detrimental pressure effects on ee prevails and that the hydrogen pressure effect on enantioslectivity is not an isolated phenomenon since more than 33% of the reaction systems studied are strongly affected. In some case, the enantioselectivity can be improved up to 97% just by applying a higher hydrogen pressure. Extension of these conclusions to other non‐chiral reagents is proposed.  相似文献   

7.
A series of chiral β‐substituted alkanephosphonates was synthesized in high enantioselectivities via the first rhodium‐catalyzed asymmetric hydrogenation of the corresponding β‐substituted‐α,β‐unsaturated phosphonates using a ferrocene‐derived monophosphoramidite ligand, with which up to 99.5% ee have been achieved for the hydrogenation of (E)‐substrates and 98.0% ee for (Z)‐substrates.  相似文献   

8.
Switching Knowles DiPAMP’s {DiPAMP=1,2‐bis[(o‐anisyl)(phenyl)phosphino]‐ ethane} MeO groups with i‐PrO ones led to the i‐Pr‐SMS‐Phos {i‐Pr‐SMS‐Phos=1,2‐bis[(o‐isoprop‐ oxyphenyl)(phenyl)phosphino]ethane} ligand which displayed a boosted catalyst activity coupled with an enhanced enantioselectivity in the rhodium(I)‐catalyzed hydrogenation of a wide‐range of representative olefinic substrates (dehydro‐α‐amido acids, itaconates, acrylates, enamides, enol acetates, α,α‐diarylethylenes, etc). The rhodium(I)‐(i‐Pr‐SMS‐Phos) catalytic profile was investigated revealing its structural attributes and robustness, and in contrast to the usual trend, 31P NMR analysis revealed that its methyl (Z)‐α‐acetamidocinnamate (MAC) adduct consisted of a reversed diastereomeric ratio of 1.4:1 in favour of the most reactive diastereomer.  相似文献   

9.
Both enantiomers of 3‐hydroxy‐2‐methylpropanoic acid tert‐butyl ester were prepared with high enantioselectivity (up to 94 %) through a ruthenium‐SYNPHOS®‐promoted asymmetric hydrogenation reaction using an atom‐economic transformation from simple and inexpensive precursors.  相似文献   

10.
The synthesis of chiral 3‐hydroxy‐2‐methylpropanoic acid esters (e.g., “Roche ester” 3a ) based on the rhodium‐catalyzed stereoselective hydrogenation of Baylis–Hillman reaction products was investigated. Full conversions and enantioselectivities of up to 99% at a substrate/catalyst ratio of up to 500/1 were achieved by application of bisphospholanes of the catASium M series as ancillary ligands. An interesting kinetic resolution was observed by the diastereoselective hydroxy‐directed hydrogenation of related racemic β‐branched precursors affording mainly anti‐isomers with up to 96%ee.  相似文献   

11.
Novel N,N,P ligand stabilized rhodium complexes exhibiting high activities and enantioselectivities in the asymmetric hydrogenation of N‐aryl imines are introduced. The ligands were synthesized from inexpensive starting materials and their modular design allows for the introduction of a broad variety of substitution patterns. Additionally, a rather low catalyst loading could be employed.  相似文献   

12.
A new strategy was developed for the synthesis of a valuable class of α‐aminomethylacrylates via the Baylis–Hillman reaction of different aldehydes with methyl acrylate followed by acetylation of the resulting allylic alcohols and SN2′‐type amination of the allylic acetates. Asymmetric hydrogenation of these diverse olefinic precursors using rhodium(Et‐Duphos) catalysts provided the corresponding β2‐amino acid derivatives with excellent enantioselectivities and exceedingly high reactivities (up to >99.5% ee and S/C=10,000). The first hydrogenation of (Z)‐configurated substrates was studied for the synthesis of β2‐amino acid derivatives. The high influence of the substrate geometry and steric hindrance on the reactivity and enantioselectivity was also disclosed for this reaction. This protocol provides a highly practical, facile and scalable method for the preparation of optically pure β2‐amino acids and their derivatives under mild reaction conditions.  相似文献   

13.
A new class of low‐cost and easy‐to‐prepare monodentate phosphoramidite ligands (CydamPhos) has been developed from readily accessible and cheap trans‐1,2‐diaminocyclohexane as starting material through a three‐step transformation. This type of ligands exhibited excellent enantioseletivities and high activities in rhodium(I)‐catalyzed asymmetric hydrogenations of dehydro‐α‐amino acid methyl esters 9 (ee: 96.2–99.8 %) and acetylenamides 11 (91.8–98.8 %). The remarkable substituent effects exhibited by the ligands on the enantioselective control of the catalysis are rationalized on the basis of molecular structure of the catalyst precursor.  相似文献   

14.
The preparation of a library of new P‐O‐P ligands (phosphine‐phosphites and phosphine‐phosphinites), easily available in two synthetic steps from enantiopure Sharpless epoxy ethers, is reported. The “lead” catalyst of the series has proven to have outstanding catalytic properties in the rhodium‐catalysed asymmetric hydrogenation of a wide variety of functionalised alkenes (16 examples). The excellent performance and modular design of the catalysts makes them attractive for future applications.  相似文献   

15.
The novel rhodium complex [Rh(S)‐Phanephos(cod)]‐catalyzed hydrogenation of disubstituted (E)‐enol acetate carboxylic acids is reported. The catalytic cycle works under 30 bar of hydrogen under conventional heating giving different 3‐acetoxy‐2,3‐disubstituted carboxylic acids with ee ≥90%. Hydrogenation occurred also under microwave dielectric heating without eroding the enantioselectivity but improving the overall efficiency of the process. With microwaves, hydrogen pressure and reaction time required for complete hydrogenation dropped to 5 bar and 30 min, respectively. The best performance of this catalyst under microwave irradiation was TON 100, TOF 196 h−1 with ee 99% on a 6‐g scale.  相似文献   

16.
17.
A novel rhodium‐catalyzed asymmetric intramolecular Pauson–Khand reaction using a chiral monophosphoramidite ligands is described. In this reaction, an in situ generated catalyst from [Rh(CO)2Cl]2, the spiro‐monophosphoramidite ligand SIPHOS and AgSbF6 was found to be effective for a series of 1,6‐enynes, providing the co‐cyclization products in good enantioselectivities (84% ee).  相似文献   

18.
The new – commercially in multi‐kg quantities available – chiral bisphospholane ligand, catASium® M, has been successfully used in the Rh(I)‐catalysed enantioselective hydrogenation of itaconic acid derivatives. Chiral ß‐substituted succinic acid derivatives were produced in good to excellent enantioselectivities. Turnover frequencies by up to 40,000 h−1 have been achieved.  相似文献   

19.
The rhodium‐catalyzed asymmetric hydrogenation of several β‐substituted itaconic acid monoesters, using a library of monodentate phosphoramidite and phosphite ligands is described. Two β‐alkyl‐substituted substrates were readily hydrogenated by the rhodium complex Rh(COD)2BF4 in combination with (S)‐PipPhos as a ligand resulting in ees of 99 %. In contrast, the corresponding more hindered β‐aryl‐substituted substrates did not exhibit acceptable enantioselectivities under these conditions. However, the use of a 48‐membered ligand library led to the identification of several suitable ligands for these substrates, resulting in ees of 89–99 %. The resulting optically active succinic acid derivatives are potentially useful building blocks for more elaborate compounds, because of the ability to differentiate between the carboxylic acid and the ester groups on either side of the molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号