首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Various mono‐ and polymetallic palladium complexes containing a 2‐pyridyl‐1,2,3‐triazole (pyta) ligand or a nonabranch‐derived (nonapyta) ligand have been synthesized by reaction of palladium acetate with these ligands according to a 1:1 metal‐ligand stoichiometry and used as catalysts for carbon‐carbon cross‐coupling including the Suzuki–Miyaura, Sonogashira and Heck reactions. The unsubstituted monopalladium and nonapalladium complexes were insoluble in all the reaction media, whereas tri‐ and tetranuclar palladium complexes were soluble, which allowed conducting catalysis under either homogeneous or heterogeneous conditions. The organopalladium complexes were characterized by standard analytical and spectroscopic methods and by thermogravimetry showing decomposition above 110 °C. Both types of catalysts showed excellent activity for these cross carbon‐carbon bond formations involving aryl halides including activated aryl chlorides or acyl chloride. Besides the comparison between homogeneous and heterogeneous catalysis, the key feature of these catalysts is their remarkable robustness that allowed recycling at least ten times in the example of the Heck reaction with excellent yields and without significant reduction of the conversion.  相似文献   

2.
A catalytic synthesis of selectively substituted phenanthridines is achieved through a reaction sequence involving palladium/norbornene‐catalyzed unsymmetrical aryl‐aryl and Heck couplings followed by aza‐Michael and retro‐Mannich reactions. In spite of the many steps involved the method is very simple and allows the formation of selectively substituted phenanthridines under mild conditions in a straightforward one‐pot reaction starting from readily available aryl iodides and bromides.  相似文献   

3.
The reactions of the N,N′‐diarylimidazolium and N,N′‐diarylimidazolinium salts with chlorosulfonic acid result in the formation of the respective disulfonated N‐heterocyclic carbene (NHC) precursors in reasonable yields (46–77%). Water‐soluble palladium catalyst complexes, in situ obtained from the respective sulfonated imidazolinium salt, sodium tetrachloropalladate (Na2PdCl4) and potassium hydroxide (KOH) in water, were successfully applied in the copper‐free Sonogashira coupling reaction in isopropyl alcohol/water mixtures using 0.2 mol% catalyst loading. The preformed (disulfonatedNHC)PdCl(cinnamyl) complex was used in aqueous Suzuki–Miyaura reactions at 0.1 mol% catalyst loading. The coupling protocol reported here is very useful for Sonogashira reactions of N‐ and S‐heterocyclic aryl bromides and chlorides with aryl‐ and alkylacetylenes.  相似文献   

4.
Short and versatile syntheses of reusable diarylphosphinopolystyrene‐supported palladium catalysts 3a – j are described. The bis(o‐tolyl)phosphino catalyst 3b is particularly efficient for the Suzuki and Sonogashira cross‐couplings, whereas the bis(m‐tolyl)phosphino catalyst 3c is the most active catalyst for Heck reactions. The couplings are performed under non‐anhydrous reaction conditions and require only low amounts of supported palladium (0.5 mequivs. for Suzuki–Miyaura, 1.0 mequiv. for Sonogashira and 0.5 mequivs. for Heck reactions could be sufficient). Catalysts 3a–j are recovered by filtration and can be reused more than four times with no loss of efficiency.  相似文献   

5.
We report on a systematic study of the use of palladium nanoparticles immobilized on spherical polyelectrolyte brushes – Pd@SPB – for Heck‐ and Suzuki‐type coupling reactions. The spherical polyelectrolyte brush particles serving as carriers for the palladium nanoparticles consist of a solid polystyrene core with a radius of 46 nm onto which long chains of cationic polyelectrolytes are grafted. The palladium nanoparticles have directly been generated within this brush layer and the stabilization of the nanoparticles is effected by the colloidal carriers, no further surface stabilization is necessary. We demonstrate that these composite particles present robust catalysts for the Heck‐ and Suzuki‐type coupling reactions. This was shown by carrying out the Suzuki‐ and Heck‐type coupling reactions at relatively low temperatures (Suzuki reaction: 50 °C, Heck reaction: 70 °C). We demonstrate that the catalytic composite particles are not changed by these reaction conditions and retain their full activity for at least four runs. The yields obtained for both reactions are good to excellent. The mild operation conditions of the palladium nanoparticles are traced back to the absence of surface stabilization. Further mechanistic implications are discussed.  相似文献   

6.
Stabilization of palladium species against agglomeration is essential for reasonable catalytic activity in C C coupling reactions. In contrast to common methods of palladium(0) complex or particle stabilization, a new concept is introduced here: it is demonstrated that a controlled release of palladium from an inactive precatalyst provides stability, too, and leads to high catalytic activity. This paper presents surprising catalytic results for Heck and Suzuki reactions with aryl chlorides and bromides, using three highly stable macrocyclic palladium complexes as catalyst precursors. Three different behaviour patterns for the macrocyclic complexes can be deduced from the evaluation of catalytic activities, UV‐Vis spectroscopy, recycling studies of immobilized complexes, and ligand addition experiments. (i) Palladium tetraphenylporphyrin reversibly releases only extremely low amounts of palladium during the reactions, and low coupling activities are observed. (ii) Release of palladium from its phthalocyanine complex is irreversible; cumulative release of palladium into the reaction mixtures leads to high catalytic activity. (iii) Extraordinary results were obtained with a Robson‐type complex of palladium, which reversibly releases effectual amounts of palladium into solution under reaction conditions. This controlled release prevents the formation of inactive palladium agglomerates under harsh conditions and leads to high catalytic performances. Even strongly deactivated electron‐rich aryl chlorides (4‐chloroanisole) can be completely and selectively converted by the in situ formed anionic palladium halide complexes; the addition of typical stabilizing additives (TBAB) was found to be unnecessary. The bimetallic palladium complex is regenerated at the end of the reaction. These results contribute to the current understanding of the active species in C C coupling reactions of Heck and Suzuki types.  相似文献   

7.
An immobilization of palladium in organic‐inorganic hybrid materials‐catalyzed Sonogashira coupling reaction has been described. Terminal alkynes reacted with aryl iodides and aryl bromides only in the presence of a 3‐(2‐aminoethylamino)propyl‐functionalized, silica gel‐immobilized palladium catalyst under amine‐, copper‐ and phosphine‐free reaction conditions. The reaction generates the corresponding cross‐coupling products in excellent yields. Furthermore, the silica‐supported palladium can be recovered and recycled by a simple filtration of the reaction solution and used for 30 consecutive trials without any decreases in activity.  相似文献   

8.
Polyvinyl chloride‐triethylene‐tetramine supported palladium complex (PVC‐TETA‐Pd) was prepared from polyvinyl chloride via simple method and the production cost of the complex was remarkably low. The complex was an efficient catalyst for Heck reaction. It was active for low activity substrates such as aryl bromides and aryl chlorides. The coupling of bromobeneze with styrene catalyzed by PVC‐TETA‐Pd afforded 99.8% yield of stilbene under the optimized reaction conditions. PVC‐TETA‐Pd could catalyze the Heck reactions in the presence of several different kinds of acid‐binding agents. Furthermore, the good reusability of PVC‐DTA‐Pd was also found for Heck reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The systems formed by palladium acetate [Pd(OAc)2] and hybrid silica materials prepared by sol‐gel from monosilylated imidazolium and disilylated dihydroimidazolium salts show catalytic activity in Suzuki–Miyaura cross‐couplings with challenging aryl bromides and chlorides. They are very efficient as recoverable catalysts with aryl bromides. Recycling is also possible with aryl chlorides, although with lower conversions. In situ formation of palladium nanoparticles has been observed in recycling experiments.  相似文献   

10.
The Suzuki reaction of tetrabromothiophene with arylboronic acids provides a regioselective approach to various 5‐aryl‐2,3,4‐tribromothiophenes, symmetrical 2,5‐diaryl‐3,4‐dibromothiophenes, and tetraarylthiophenes. Unsymmetrical 2,5‐diaryl‐3,4‐dibromothiophenes are prepared by Suzuki reaction of 5‐aryl‐2,3,4‐tribromothiophenes. Tetraarylthiophenes containing two different types of aryl groups are obtained by Suzuki reactions of 2,5‐diaryl‐3,4‐dibromothiophenes. During the optimization of the conditions of each individual reaction, the solvent, the catalyst and the temperature play an important role. In several cases, classical conditions [use of tetrakis(triphenylphosphane)palladium(0), Pd(PPh3)4, as the catalyst] gave excellent yields. The yields of those transformations which failed or proceeded sluggishly could be significantly improved by application of a new biarylmonophosphine ligand developed by Buchwald and co‐workers. Regioselective metal‐halide exchange reactions of tetrabromothiophene provide a convenient approach to various 2,5‐disubstituted 3,4‐dibromothiophenes. 5‐Alkyl‐2‐trimethylsilyl‐3,4‐dibromothiophenes could be prepared in one pot by sequential addition of trimethylchlorosilane and alkyl bromides. The reaction of tetrabromothiophene with methyl chloroformate and subsequent Suzuki reactions afforded 3,4‐diaryl‐2,5‐bis(methoxycarbonyl)thiophenes.  相似文献   

11.
A fluorapatite‐supported palladium catalyst (PdFAP) was synthesized by treatment of fluorapatite (prepared by incorporating the basic species fluoride ion into apatite in situ by co‐precipitation) with bis(benzonitrile)palladium(II ) chloride in acetone. The catalyst displayed high catalytic activity for Suzuki coupling of aryl iodides and bromides with boronic acids at room temperature and chloroarenes at 130 °C in the presence of tetrabutylammonium bromide to give biaryls in excellent yields. Heck olefination of chloroarenes was also successfully carried out by this catalyst. PdFAP was recovered quantitatively by simple filtration and reused with consistent activity. PdFAP was well characterized by XRD, FTIR, XPS, ICP‐AES, CO2 TPD and CHN elemental analysis.  相似文献   

12.
The well‐defined diphenylvinylphosphine‐palladium complex 1 and the diphenylcyclopropylphosphine‐palladium complex 2 were successfully synthesized. The crystal structures of these complexes were obtained by X‐ray crystallographic analysis. Both complexes were air‐ and moisture‐stable, and could be prepared on a gram scale. These palladium complexes catalyzed the Suzuki–Miyaura reaction of aryl bromides [turnover numbers (TON) up to 196,000] and aryl chlorides (TON up to 50,000). Furthermore, complex 2 catalyzed the Buchwald–Hartwig amination of aryl chlorides and aromatic/aliphatic amines with a low catalyst loading. These complexes showed different reactivities for the coupling of 2‐chloropyridine, and the origin of this difference is discussed.  相似文献   

13.
A new catalyst based on palladium nanoparticles immobilized on nano‐silica triazine dendritic polymer (Pdnp‐nSTDP) was synthesized and characterized by FT‐IR spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X‐ray, transmission electron microscopy and elemental analysis. The size of the palladium nanoparticles was determined to be 3.1±0.5 nm. This catalytic system showed high activity in the Suzuki–Miyaura cross‐coupling of aryl iodides, bromides and chlorides with arylboronic acids and also in the Heck reaction of these aryl halides with styrenes. These reactions were best performed in a dimethylformamide (DMF)/water mixture (1:3) in the presence of only 0.006 mol% and 0.01 mol% of the catalyst, respectively, under conventional conditions and microwave irradiation to afford the desired coupling products in high yields. The Pdnp‐nSTDP was also used as an efficient catalyst for the preparation of a series of star‐ and banana‐shaped compounds with a benzene, pyridine, pyrimidine or 1,3,5‐triazine unit as the central core. Moreover, the catalyst could be recovered easily and reused several times without any considerable loss of its catalytic activity.  相似文献   

14.
A highly efficient, air‐ and moisture‐stable and easily recoverable magnetic nanoparticle‐supported palladium catalyst has been developed for the Suzuki, Sonogashira and Heck reactions. A wide range of substrates was coupled successfully under aerobic conditions. In particular, the performance of the magnetic separation of the catalyst was very efficient, and it is possible to recover and reuse it at least eight times without significant loss of its catalytic activity.  相似文献   

15.
Four tridentate thiosemicarbazone salicylaldiminato‐palladium(II) complexes of the general formula [Pd(saltsc‐R)PPh3] [saltsc=salicylaldehyde thiosemicarbazone; R=H ( 1 ), 3‐tert‐butyl ( 2 ), 3‐methoxy ( 3 ), 5‐chloro ( 4 )], have been evaluated as catalyst precursors for the Mizoroki–Heck coupling reaction between a variety of electron‐rich and electron‐poor aryl halides and olefins. The palladium complexes (0.1–1 mol% loading) were found to effectively catalyze these reactions with high yields being obtained when aryl iodides and aryl bromides were utilized. The effects of base, catalyst loading, reaction temperature and reaction time on the catalytic activity of the most active complex were also investigated.  相似文献   

16.
How much fluoride is good for a strong electron‐withdrawing effect? In this review we summarize recent results on the use of perfluoroalkanesulfonates, in particular of the cost effective nonafluorobutanesulfonates (nonaflates), in transition metal‐catalyzed reactions and a few other typical transformations. During the last decade many advantages over the commonly used triflates have been discovered. The generation of alkenyl and (het)aryl nonaflates and their applications in metal‐catalyzed processes such as Heck, Suzuki, Sonogashira, Stille, and Negishi couplings or amination reactions are described. Although far from a systematic investigation, all the presented results clearly demonstrate the many advantages of nonaflates and of similar higher fluorinated sulfonates in laboratory and industrial scale organic synthesis.  相似文献   

17.
A new catalytic system based on palladium‐amido‐N‐heterocyclic carbenes for Suzuki–Miyaura coupling reactions of heteroaryl bromides is described. A variety of sterically bulky, amido‐N‐imidazolium salts were synthesized in high yields from the corresponding anilines. This catalytic system effectively promoted Suzuki–Miyaura couplings of heteroaryl bromides and chlorides with a range of boronic acids to give the corresponding aryl compounds in high yield. The yield was increased with increasing steric bulkiness of the substituted group. Especially, 1‐(2,6‐diisopropylphenyl)‐3‐N‐(2,4,6‐tri‐tert‐butylphenylacetamido)imidazolium bromide ( 4bc ) exhibited 850,000 TON in the coupling reaction of 2‐bromopyridine and phenylboronic acid. In addition, pharmaceutical compounds such as milrinone and irbesartan were synthesized via Suzuki–Miyaura coupling using sterically bulky, amido‐N‐imidazolium salt ( 4bc ) as a ligand.  相似文献   

18.
Diethanol amine‐functionalized polymer‐supported palladium (0) complex as catalyst for Suzuki cross‐coupling reaction in water was synthesized and characterized. The catalyst exhibits excellent catalytic activity and stability in the Suzuki cross‐coupling reaction. Various aryl bromides were coupled with aryl boronic acids in water, under air, and in the presence of 0.5 mol % of the catalyst to afford corresponding cross‐coupled products in high yields at 100°C. Furthermore, the heterogeneous catalyst can be readily recovered by simple filtration and reused for several times only with a slight decrease in its activity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
In this contribution, we present the synthesis of norbornene‐supported N‐heterocyclic (NHC) carbenes. These functionalized norbornenes were polymerized via ring‐opening metathesis polymerization in a controlled fashion either before or after metalation with a variety of palladium and ruthenium precursors resulting in the formation of polymer‐supported NHC‐based metal catalysts. The activities of the palladium‐based catalysts in the Suzuki–Miyaura, Sonogashira and Heck coupling reactions were studied in detail. In all cases, the polymeric catalysts demonstrated the same activity as their small molecule analogues. Furthermore, we carried out preliminary investigations into the stability of these catalysts using poisoning studies. A clear dependence of the stability of the polymer‐supported catalysts on their palladium precursor was observed with palladium acetate‐based polymeric NHC catalysts being the most stable. Finally, we have studied the reactivity of our supported NHC ruthenium complexes as catalysts for ring‐closing metathesis. Again, in all cases good conversions were observed with comparable activities to other supported NHC‐ruthenium catalysts. Lastly, we were able to remove the ruthenium catalysts from the solution quantitatively demonstrating the possibility of metal removal.  相似文献   

20.
In the presence of iron(II) chloride (FeCl2; 20 mol%) and potassium tert‐butoxide (t‐BuOK; 4 equiv.) in dimethyl sulfoxide (DMSO), aryl and heteroaryl iodides undergo stereoselective Mizoroki–Heck C C cross‐coupling reactions with styrenes at 60 °C giving the corresponding (E)‐alkenes. The best yields are obtained upon adding a ligand (80 mol%) such as proline or picolinic acid. Aryl bromides and pyridinyl bromides are also coupled with styrenes but in lower yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号