首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of maleic anhydride‐grafted hard paraffin wax (MA‐g‐wax) and oxidized hard paraffin wax (OxWax), as possible compatibilizers, on the morphology, thermal and mechanical properties of LDPE/sisal fiber composites were examined. The differential scanning calorimetry (DSC) results show that sisal alone did not change the crystallization behavior of LDPE, while the two waxes influenced the crystallization behavior of LDPE in different ways, whether mixed with LDPE alone or in the presence of sisal. The thermal properties seem to be influenced by the fact that the waxes preferably crystallize around the short sisal fibers, and by the fact that the two waxes have different compatibilities with LDPE. The TGA results show an increase in the thermal stability of the blends in the presence of the two waxes, with LDPE/OxWax showing a more significant improvement. The presence of wax, however, reduced the thermal stability of the LDPE/sisal/wax composites. The presence of OxWax and MA‐g‐wax similarly influenced the tensile properties of the composites. Both waxes similarly improved the modulus of the compatibilized composites, but in both cases the tensile strengths were worse, probably because of a fairly weak interaction between LDPE and the respective waxes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Silicon nitride/glass fiber (Si3N4/GF) hybrid fillers are performed to prepare the Si3N4/GF/epoxy composites. Results showed the thermal conductivities of the Si3N4/GF/epoxy composites that are improved with the addition of Si3N4, and the thermal conductive coefficient λ is 1.412 W/mK with 38 vol% modified Si3N4/GF hybrid fillers (30 vol% Si3N4 + 8 vol% GF), seven times higher than that of pure epoxy resin. The flexural strength and impact strength of the composites are optimal with 13 vol% modified Si3N4/GF hybrid fillers (5 vol% Si3N4 + 8 vol% GF). The dielectric constant and dielectric loss of the composites are increased with the increasing addition of Si3N4. For a given Si3N4/GF hybrid fillers loading, the surface modification can further improve the thermal conductivities of the Si3N4/GF/epoxy composites. POLYM. COMPOS., 35:1338–1342, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
The fatigue properties of nonwoven randomly oriented short hemp fiber mat and chopped strand mat (CSM) glass fiber reinforced polyester composites have been studied, mainly in tension–tension mode. Despite having poorer absolute fatigue strength, the hemp fiber composites exhibited less fatigue sensitivity as compared with the CSM glass fiber composites in tension–tension fatigue. This could be correlated with the lower stiffness degradation observed during fatigue of the hemp fiber composites as compared with the glass fiber composites at the same normalized peak stress levels. Also, images recorded during fatigue loading showed that the hemp fiber composites were better at resisting crack formation and growth than the glass fiber composites. These results suggest that hemp fiber composites have the potential to replace glass fiber composites in applications where components are subjected to fatigue loads but the stress levels are of moderate value. POLYM. COMPOS., 35:1926–1934, 2014. © 2014 Society of Plastics Engineers  相似文献   

4.
The mechanical properties of composites of granular starch and low density polyethylene (PE) have been studied as functions of starch volume fraction ?, granule size, and presence of compatibilizer. Property–volume fraction relationships were interpreted using various theories of composite properties. The dependence of elongation (? ~ ?1/3) and tensile strength (σ ~ ?2/3) agree with theoretical predictions, although the proportionality constants are less negative than theoretical values. The addition of compatibilzer (ethylene-co-acrylic acid copolymer, EAA) did not significantly affect the elongation or tensile strength, but significantly increased the composite tensile modulus. The cornstarch/PE moduli could be described by the Kerner or Halpin-Tsai equations. Analysis of the composite moduli data using the Halpin-Tsai equation allowed the estimation of the modulus of granular starch. The value obtained, 15 GPa, is considerably greater than most unfilled synthetic polymers of commercial importance, but significantly lower than the modulus of cellulose. It is also greater than a previously reported value of 2.7 GPa. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
The properties of fiber-reinforced plastics are considerably influenced by fiber-matrix interaction. The aim of this study was to investigate the influence of glass fiber surface treatments on the morphology of poly(ethylene terephthalate) (PET) and on selected mechanical properties of unidirectional PET/glass fiber composites. The materials used here were E-glass fibers treated with model sizings including aminosilane as a coupling agent and polyurethane and epoxy resin dispersions as film formers and PET as the matrix. For identification of the degree of crystallinity of the PET matrix, differential scanning calorimetry (DSC) was used. To study the influence of the different sizings on the mechanical properties, the following tests were performed: interlaminar and intralaminar shear tests and a transverse tensile test. Dynamic-mechanical analysis (DMA) was used to characterize the behavior of the composites under dynamical load. The DSC results show that the overall crystallinity and the melting behavior of the PET matrix were hardly influenced by the glass fiber surface treatments used. The various strength properties of the composites are influenced not only by the silane coupling agent, but also by the type of film former. With an epoxy resin dispersion, the mechanical properties were enhanced compared with a polyurethane dispersion. These results were confirmed by characterization of the composites by DMA.  相似文献   

7.
聚乙二醇对树脂基玻璃纤维布复合材料增韧具有优良的效果,但其柔性链段的分子结构本质极大影响了复合材料的耐热性能。本文以聚乙二醇为改性剂制备了聚乙二醇/BT树脂/玻璃纤维布复合材料,系统研究了不同分子链长度以及不同含量的聚乙二醇对复合材料热性能的影响。研究结果表明:聚乙二醇的加入降低了复合材料的玻璃化转变温度、5%热失重温度以及800 ℃残炭率。在聚乙二醇相对分子质量为4000时,复合材料的热性能出现最大值。随聚乙二醇含量的增加,复合材料的热稳定性能逐步下降。由于聚乙二醇、BT树脂、玻璃纤维布之间较大的界面结合力,使基体树脂的链运动受到一定程度的限制,一定程度上缓解了由于聚乙二醇的加入而使复合材料的热稳定性能下降的趋势。研究结果为合理添加聚乙二醇而提高复合材料的韧性提供了热性能方面的参考依据。  相似文献   

8.
In this article, a series of epoxy composites consisting of multilayered ultra-fine glass fiber felts (GFFs) were produced by a hand lay-up process. The incorporation of GFFs greatly enhances the sound-absorption and sound-insulation properties of epoxy composites. It can be mainly attributed to great numbers of voids introduced into the matrix and the increasing interfacial area between glass fiber and epoxy resin, which is confirmed by scanning electron microscopy results. Furthermore, the thermal insulation performance of epoxy/glass fiber felt (EP/GFF) composites is continuously improved with the growing GFF layer, and meanwhile EP/GFF composites exhibit the satisfactory mechanical property. Such novel EP/GFF composites can serve as promising structural, heat-insulated, and soundproof materials in many multifunctional systems including buildings, aircrafts, constructions, vehicles, etc. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46935.  相似文献   

9.
The volume resistivity and percolation thresholds of carbon black (CB) filled polypropylene (PP), PP/epoxy, and PP/epoxy/glass fiber (GF) composites were measured. The morphology of these conductive polymer composites was studied with scanning electron microscopy (SEM). The effects of the GF and epoxy contents on the volume resistivity were also investigated. The PP/epoxy/GF/CB composite exhibited a reduced percolation threshold, in comparison with that of the PP/CB and PP/epoxy/CB composites. At a given CB content, the PP/epoxy/GF/CB composite had a lower volume resistivity than the PP/CB and PP/epoxy/CB composites. SEM micrographs showed that CB aggregates formed chainlike structures and dispersed homogeneously within the PP matrix. The addition of the epoxy resin to PP resulted in the preferential location of CB in epoxy, whereas in the PP/epoxy/GF multiphase blends, because of the good affinity of CB to epoxy and of epoxy to GF, CB particles were located in the epoxy phase coated on GF. The decreased percolation threshold and volume resistivity indicated that conductive paths existed in the PP/epoxy/GF/CB composite. The conductive paths were probably formed through the interconnection of GF. Appropriate amounts of GF and epoxy should be used to decrease the volume resistivity and provide sufficient epoxy coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1142–1149, 2005  相似文献   

10.
The purpose of this study is to investigate the influence of different types of fibers on the mechanical properties of hybrid composite materials. Long and short glass fibers (GF) and different types of organic fibers, viz. aramid fiber, DuPont Kevlar‐49 (KF), liquid crystalline polymer (LCP), and vinylon (VF) in hybrid composites, were used to reinforced the high density polyethylene (HDPE) matrix. The long fiber hybrid composites were prepared in a “fiber separating and flying machine,” while the short fiber hybrid composites were prepared in an “elastic extruder.” The total amount of fibers used in both long and short fiber hybrid composites was fixed at 20 vol%. The influence of fiber content, length, and mixing ratio on mechanical properties, such as tensile, bending, Izod and high rate impact strength, as well as viscoelastic propertics in the solid state, was studied. Fracture surfaces of the materials were also examined using a scanning electron microscopy.  相似文献   

11.
In discontinuous fiber-reinforced composites, the shear strength at the fiber–matrix interface plays an important role in determining the reinforcing effect. In this paper, a method was devised to accurately determine this shear strength, taking the strength distribution of glass fiber into consideration. Calculated strength values based on the shear strenght obtained by the method were in better agreement with the experimental observations than those calculated by employing the shear strength obtained on the assumption that the fiber strength was uniform. The tensile strength of composites increases with increasing aspect ratio of the reinforcing fibers. This trend is almost the same regardless of the kind of matrix, the nature of interfacial treatment, and the environmental temperature. When composites are reinforced with random-planar orientation of short glass fibers of 1.5 times the mean critical fiber length, the tensile strength of composite reaches about 90% of the theoretical strength of composites reinforced with continuous glass fiber. Reinforcing with glass fibers 5 times the critical length, the tensile strength reaches about 97% of theoretical. However, from a practical point of view, it is adequate to reinforce with short fibers of 1.5–2.0 times the mean critical fiber lenght.  相似文献   

12.
耐高温高导热环氧树脂/玻纤/BN复合材料的制备   总被引:1,自引:0,他引:1  
以4,4-二氨基二苯砜(DDS)和内亚甲基四氢邻苯二甲酸酐(NA)为复配固化剂,采用高温模压成型法制备耐高温高导热环氧树脂/玻纤/氮化硼(BN)复合材料。探讨了BN用量和偶联剂处理对复合材料冲击强度、导热性能和电阻率的影响。结果表明:当nDDS:nNA=3:1时,复合材料的耐热性能最佳。当BN质量分数为8%时,复合材料的冲击强度最高;导热性能随BN用量的增加而增加,当BN用量为15%时,热导率为0.7560W/(mk),此时复合材料仍保持较高的体积、表面电阻率;当BN填充量为一定值时,偶联剂处理使冲击强度和导热性能得到进一步提高。  相似文献   

13.
Isotactic polypropylene(PP)/glass fiber(GF) composites were modified by grafting polymerization of polyfunctional monomer, pentaerythritol triacrylate (PETA), in the presence of 2,5-dimethyl-2,5-di(tert-butylperoxy) hexane peroxide (DDHP) via melt extrusion. Fourier transform infrared spectroscopy (FTIR), melt strength test (MS), mechanical property test, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to characterize the microstructure and properties of the modified composites. The crystallization kinetics was investigated by Mo method while apparent activation energy of crystallization of the composites was determined by Kissinger method. The FTIR results showed that the acrylic polymers were grafted onto the polypropylene chains. The grafting made the melt strengths and the mechanical properties of the modified composites, and the interfacial adhesion between PP and glass fiber all enhanced. High melting and crystallization temperatures, high crystallization rate and large activation energy of crystallization were also obtained after grafting. In addition, the grafted acrylic polymers recovered the depressed crystallization of polypropylene and restrained α-β transition in fatigue experiment.  相似文献   

14.
A new diamine was synthesized using bisphenol‐A and p‐amino benzoic acid. Polyimides I and II were prepared with the diamine and pyromellitic dianhydride/3,3′,4,4′ benzophenone tetracarboxylic acid dianhydride. Bismaleimide (BMI) was synthesized using the same diamine and maleic anhydride. The prepared diamine and polyimides were characterized using FTIR. Thermo gravimetric analysis was used to study the thermal properties of synthesized polyimides and BMI. Woven glass fabric/unidirectional glass fiber‐polyimide/BMI composites were made and their properties (fiber volume fraction, density, tensile, flexural, impact, and hardness) were studied and compared with a few representative carbon fiber polyimide, carbon fiber–epoxy, and glass fiber–epoxy composites. The prepared composites were subjected to thermal aging and moisture absorption and their effects on tensile and flexural properties were studied. POLYM. COMPOS., 28: 372–380, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
Enhancement of tensile strength, impact strength, and flexural strength of polypropylene/short glass fiber composites by treating the glass fibers with coupling agent, mixing with maleated polypropylene (MPP) for compatibilization and adhesion, and with nucleating agent for improvement of polypropylene crystallization was studied. The results showed that both the silane coupling agent and MPP enhance tensile strength, impact strength, and flexural strength. In the absence of MPP, the effect of silane coupling agent on the mechanical properties of the composites decreases in the following order: alkyl trimethoxy silane (WD‐10) > γ‐methacryloxypropyl trimethoxysilane (WD‐70) > N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane (WD‐52), whereas in the presence of MPP, the order changes as follows: WD‐70 > WD‐10 > WD‐52. When the glass fibers were treated with WD‐52, 4,4‐diamino‐diphenylmethane bismaleimide (BMI) can further enhance the mechanical properties of the composite. The three kinds of strengths increase with MPP amount to maximum values at 5% MPP. As a nucleating agent, adipic acid is better than disodium phthalate in improving the mechanical properties, except for the notched impact strength. Wide‐angle X‐ray diffraction showed that the adipic acid is an α‐type nucleating agent, whereas disodium phthalate is a β‐type nucleating agent. Blending with styrene–butadiene rubber can somewhat improve the notched impact strength of the composites, but severely lowers the tensile strength and bending strength. Scanning electron micrographs of the broken surface of the composite showed greater interfacial adhesion between the glass fibers and polypropylene in the modified composite than that without modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1414–1420, 2005  相似文献   

16.
《Polymer Composites》2017,38(7):1319-1326
The effects of epoxy‐functionalized glass fiber (GF) on the electrical conductivity, crystallization behavior, thermal stability, and dynamic mechanical properties of polyoxymethylene (POM)/thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivities of POM/5%−20% TPU/1% MWCNT composites are significantly reduced by nine orders of magnitude after the addition of 20% GF because of the formation of TPU‐coated GF structure facilitating the construction of conductive networks. GF has no obvious influence on the crystallization temperature, melting temperature, and degree of crystallinity of POM in POM/TPU/MWCNT composites because of their relatively bigger size compared with POM chains and MWCNTs. The storage moduli of POM/TPU/MWCNT composites are improved by the addition of GF, indicating that POM/TPU/MWCNT/GF composites are promising materials with good electrical and mechanical properties. POLYM. COMPOS., 38:1319–1326, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
This paper presents a study on the development conductive knitted fabric reinforced thermoplastic composites, with the intention to use them in electrostatic discharge applications. Conductive knitted fabric composites are made using polypropylene as the matrix material, glass fibers as the reinforcement, and copper wires as the conductive fillers. To facilitate knitting of stiff copper wires and glass fibers, uncommingled yarns comprising copper wires, glass fibers, and polypropylene fibers are produced using a hollow spindle spinning method. Several kinds of conductive composite laminates are made by changing the fabric knit structure, stitch density, and the composition of yarns. The electrostatic discharge (ESD) attenuation of various laminates is measured at voltage potentials 8kV and 12 kV. The variations of ESD properties of composite laminates with the fabric knit structure, stitch density, and the amount of copper are described.  相似文献   

18.
Interfacial polymerization to polyamide 6, 6 followed by introduction of ionic groups was performed on the surface of short glass fibers. The ionic interphase-modified fibers were used with poly(ethylene-co-methacrylic acid) (DuPont Surlyn) to prepare composites with specific fiber-matrix interactions. Fiber treatment increased composite tensile and bending properties. An increase in the average fiber length was observed, which was attributed to a decrease in the fiber attrition during mixing. The effect of increasing temperature on the composite mechanical properties was studied. Different behavior was observed before and after the glass transition temperature, Tg, of the matrix. The dynamic mechanical measurements showed an increase in the Tg of the matrix after the treatments, which is attributed to a decrease in chain mobility at the interface resulting from increased interactions of the treated fiber surface with the polymer. Scanning electron microscopy of fractured composites after tensile tests revealed a smooth fiber surface with no polymer at the surface for the untreated composites. Adhered polymer was clearly observed on the surface of treated fibers, indicating better fiber wetting by the matrix. This improved adhesion was attributed to the grafted nylon molecules at the glass fiber surface.  相似文献   

19.
Three kinds of compatibilizers, ethylene–ethyl acrylate copolymer (EEA), ethylene–ethyl acrylate–glycidyl methacrylate copolymer (EAG), and ethene–maleic anhydride–glycidyl methacrylate copolymer (EMG), were introduced to PA6/PET/GF blends for the first time to study the effect of different compatibilizers on composite. EEA, EAG, and EMG showed different effect on the properties of PA6/PET/GF blends. An observation of the GF–resin interface by scanning electronic microscope indicated EAG and EMG enhanced the adhesion of resin to GF, while EEA exhibited no improvement. Differential scanning calorimetry analysis showed that both EMG and EAG increased the degree of crystallinity of the PA6/PET/GF blends, whereas EEA declined. According to dynamic mechanical analysis, EAG, and EMG remarkably increased the storage modulus of composites. For the composites at a given GF content of 30 wt %, EMG increased the tensile strength from 140.6 to 156.3 MPa. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46429.  相似文献   

20.
Curing reactions of diglycidyl ether of bisphenol F (DGEBP‐F) and pre‐catalyzed methyltetrahydrophthalic anhydride (MTHPA) with benzyl triethyl ammonium chloride (BTEAC) were studied and effects of glass fibers evaluated. The influence on the kinetics of glass fibers and a hybrid blend of maleated polypropylene + glass fibers is studied. Isothermal and dynamic kinetic parameters are determined by differential scanning calorimetry (DSC). Applicability of the autocatalytic model is investigated. The model serves well in the range of degrees of conversion between 25 and 80%. At high conversion rates the diffusion control becomes apparent. Glass fibers accelerate the curing, shortening the time needed to reach the maximum reaction rate; this is reflected in lower activation energies for curing in comparison to the neat resin. The effects observed can be explained by a reaction between the amine group present on the fiber surfaces and the epoxy glycidyl groups. The result of both isothermal and non‐isothermal curing of resin + glass fibers commingled with polypropylene are close to those for the neat resin. The reinforcement increases the elastic modulus 12 times, the tensile strength 2 times, and the impact strength 285 times. The glass fibers + commingled polypropylene reinforcement provides comparable mechanical properties as glass fibers alone when normalized with respected to the density fraction of the fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号