首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient catalytic asymmetric epoxidation of β‐trifluoromethyl‐β,β‐disubstituted unsaturated ketones has been achieved by a pentafluorine‐substituted phase‐transfer catalyst with hydrogen peroxide (30%). Thus, the β‐trifluoromethyl‐α,β‐epoxy ketones with a quaternary carbon centre were obtained in excellent diastereoselectivities (up to 100:1 dr) and excellent enantioselectivities (up to 99.7% ee). Low catalyst loading, recycle of catalyst, environmentally benign oxidant and easy transformation of the epoxides into medicinally important trifluoromethylated intermediate make our protocol much more practical.  相似文献   

2.
The rhodium‐catalyzed asymmetric hydrogenation of several β‐substituted itaconic acid monoesters, using a library of monodentate phosphoramidite and phosphite ligands is described. Two β‐alkyl‐substituted substrates were readily hydrogenated by the rhodium complex Rh(COD)2BF4 in combination with (S)‐PipPhos as a ligand resulting in ees of 99 %. In contrast, the corresponding more hindered β‐aryl‐substituted substrates did not exhibit acceptable enantioselectivities under these conditions. However, the use of a 48‐membered ligand library led to the identification of several suitable ligands for these substrates, resulting in ees of 89–99 %. The resulting optically active succinic acid derivatives are potentially useful building blocks for more elaborate compounds, because of the ability to differentiate between the carboxylic acid and the ester groups on either side of the molecule.  相似文献   

3.
A highly efficient and enantioselective hydrogenation of unprotected β‐ketoenamines catalyzed with ruthenium(II) dichloro{(S)‐(−)‐2,2′‐bis[di(3,5‐xylyl)phosphino]‐1,1′‐binaphthyl}[(2S)‐(+)‐1,1‐bis(4‐methoxyphenyl)‐3‐methyl‐1,2‐butanediamine] {Ru[(S)‐xylbinap][(S)‐daipen]Cl2} has been successfully developed. This methodology provides a straightforward access to free γ‐secondary amino alcohols, which are key building blocks for a variety of pharmaceuticals and natural products, with high yields (>99%) and excellent enantioselectivities (up to 99% ee) in all cases.  相似文献   

4.
The highly catalytic asymmetric α‐hydroxylation of 1‐tetralone‐derived β‐keto esters and β‐keto amides using tert‐butyl hydroperoxide (TBHP) as the oxidant was realized by a chiral N,N′‐dioxide‐magnesium ditriflate [Mg(OTf)2] complex. A series of corresponding chiral α‐hydroxy dicarbonyl compounds was obtained in excellent yields (up to 99%) with excellent enantioselectivities (up to 98% ee). The products were easily transformed into useful building blocks and the precursor of daunomycin was achieved in an asymmetric catalytic way for the first time.  相似文献   

5.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

6.
A highly efficient strategy for the synthesis of a series of C3*‐TunePhos chiral diphosphine ligands was well established with several remarkable features. The synthetic utility of these ligands was explored for the ruthenium‐catalyzed asymmetric hydrogenation of β‐keto esters. Up to 99% ee values were achieved for the enantioselective synthesis of β‐hydroxy acid derivatives, which are very important chiral building blocks for the synthesis of a variety of natural products and biologically active molecules.  相似文献   

7.
Biocatalytic reduction of α‐ or β‐alkyl‐β‐arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1‐nitrocyclohexene ( 1 ) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2‐aryl‐1‐nitropropenes ( 4a–d ) to their equivalent (S)‐nitropropanes 9a–d . The enzyme shows a preference for the (Z)‐isomer of substrates 4a–d , providing almost pure enantiomeric products 9a–d (ees up to>99%) in quantitative yield, whereas the respective (E)‐isomers are reduced with lower enantioselectivity (63–89% ee) and lower product yields. 1‐Aryl‐2‐nitropropenes ( 5a , b ) are also reduced efficiently, but the products (R)‐ 10 have lower optical purities. The structure of the enzyme complex with 1‐nitrocyclohexene ( 1 ) was determined by X‐ray crystallography, revealing two substrate‐binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)‐ and (Z)‐substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase.  相似文献   

8.
The asymmetric organocatalytic transfer hydrogenation of β‐acylamino and β‐tert‐butyloxycarbonylamino nitroolefins has been successfully realised in excellent enantioselectivities and yields (up to >99% ee, 97% yield) with a simple thiourea catalyst and a Hantzsch ester as hydrogen source, giving a direct access to enantiomerically pure β‐amino nitroalkanes.

  相似文献   


9.
The highly enantioselective organo‐co‐catalytic aza‐Morita–Baylis–Hillman (MBH)‐type reaction between N‐carbamate‐protected imines and α,β‐unsaturated aldehydes has been developed. The organic co‐catalytic system of proline and 1,4‐diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N‐Boc‐ and N‐Cbz‐protected β‐amino‐α‐alkylidene‐aldehydes in good to high yields and up to 99% ee. In the case of aza‐MBH‐type addition of enals to phenylprop‐2‐ene‐1‐imines, the co‐catalytic reaction exhibits excellent 1,2‐selectivity. The organo‐co‐catalytic aza‐MBH‐type reaction can also be performed by the direct highly enantioselective addition of α,β‐unsaturated aldehydes to bench‐stable N‐carbamate‐protected α‐amidosulfones to give the corresponding β‐amino‐α‐alkylidene‐aldehydes with up to 99% ee. The organo‐co‐catalytic aza‐MBH‐type reaction is also an expeditious entry to nearly enantiomerically pure β‐amino‐α‐alkylidene‐amino acids and β‐amino‐α‐alkylidene‐lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co‐catalyzed aza‐MBH‐type reaction are also discussed.  相似文献   

10.
The first example of an asymmetric β‐peroxidation of nitroalkenes is disclosed. The reaction is promoted by catalytic loadings of a commercially available diaryl‐2‐pyrrolidinemethanol derivative and tert‐butyl hydroperoxide as the oxidant. A synthetically useful class of peroxides is obtained in good yield and enantioselectivity (up to 84% ee).  相似文献   

11.
A new strategy was developed for the synthesis of a valuable class of α‐aminomethylacrylates via the Baylis–Hillman reaction of different aldehydes with methyl acrylate followed by acetylation of the resulting allylic alcohols and SN2′‐type amination of the allylic acetates. Asymmetric hydrogenation of these diverse olefinic precursors using rhodium(Et‐Duphos) catalysts provided the corresponding β2‐amino acid derivatives with excellent enantioselectivities and exceedingly high reactivities (up to >99.5% ee and S/C=10,000). The first hydrogenation of (Z)‐configurated substrates was studied for the synthesis of β2‐amino acid derivatives. The high influence of the substrate geometry and steric hindrance on the reactivity and enantioselectivity was also disclosed for this reaction. This protocol provides a highly practical, facile and scalable method for the preparation of optically pure β2‐amino acids and their derivatives under mild reaction conditions.  相似文献   

12.
The highly catalytic asymmetric α‐hydroxylation of β‐indanone esters and β‐indanone amides using peroxide as the oxidant was realized with a new C‐2′ substituted Cinchona alkaloid derivatives. The two enantiomers of α‐hydroxy‐β‐indanone esters could be obtained by simply changing the oxidant. This protocol allows a convenient access to the corresponding α‐hydroxy‐β‐indanone esters and α‐hydroxy‐β‐indanone amides with up to 99% yield and 98% ee.

  相似文献   


13.
The activation of C Cl bond of (Z)‐α‐chloroalkylidene‐β‐lactones and (E)‐α‐chloroalkylidene‐β‐lactams via the Suzuki cross‐coupling reaction is reported in this paper. Alkyl, heteroaromatic, substituted phenyl‐ and alkenylboronic acids can be coupled with a wide variety of α‐chloroalkylidene‐β‐lactones and β‐lactams in excellent yields within a short period of time. The cross‐coupling reaction of optically active substrates leads to the optically active compounds without racemization of the corresponding chiral center.  相似文献   

14.
A regio‐ and enantioselective copper‐catalyzed 1,4‐conjugate addition of trimethylaluminium to linear δ‐aryl‐substituted α,β,γ,δ‐unsaturated alkyl ketones was developed. A series of γ,δ‐unsaturated alkyl ketones were obtained in good yields with high regio‐ and enantioselectivity (up to 88% ee and 96:4 dr). Expansion of the reaction scope to substrates containing aromatic heterocycles also afforded good yields and enantioselectivities (up to 91% ee) with very high regioselectivities, exclusively providing the single 1,4‐products.

  相似文献   


15.
It was shown that the catalytic hydrogenation of α‐iminophosphonates by molecular hydrogen can serve as a convenient method for the synthesis of racemic and optically active α‐aminophosphonates. Up to 94% ee was achieved in the rhodium‐catalyzed enantioselective hydrogenation using chiral ligand (R)‐BINAP.  相似文献   

16.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

17.
The first copper‐catalyzed enantioselective conjugate addition of indoles to β‐substituted unsaturated acyl phosphonates was successfully realized by using a heteroarylidene‐tethered bis(oxazoline) ligand. The reaction features high efficiency, cheap catalyst and broad generality. In the case of either β‐alkyl‐ or β‐aryl‐substituted unsaturated acyl phosphonates, the 3‐indolyl adducts were achieved in high yields with good to excellent enantioselectivities (up to 97% ee). The 3‐indolyl adducts can serve as important intermediates in the synthesis of indole alkaloids.

  相似文献   


18.
An efficient catalytic asymmetric hydrogenation of racemic α‐arylcyclohexanones with an ethylene ketal group at the 5‐position of the cyclohexane ring via dynamic kinetic resolution has been developed, giving chiral α‐arylcyclohexanols with two contiguous stereocenters with up to 99% ee and >99:1 cis/trans‐selectivity. Using this highly efficient asymmetric hydrogenation reaction as a key step, (−)‐α‐lycorane was synthesized in 19.6% overall yield over 13 steps from commercially available starting material.  相似文献   

19.
BACKGROUND: Pharmaceutical companies continue to evaluate β‐amino acids and β‐lactams in a range of drug candidates. The development of a highly efficient and selective bioresolution of cyclic β‐lactam substrates could yield enantiopure lactams and β‐amino acids with medicinal potential. The aim of this work was to discover and develop a biocatalyst capable of selectively hydrolysing β‐lactam substrates. RESULTS: Screening of our in‐house culture collection led to the discovery of a microorganism, Rhodococcus globerulus (NCIMB 41042) with β‐lactamase activity. Whole‐cell bioresolutions of the β‐lactams 1–4 were successfully carried out and in all cases enantiomeric excesses of the residual lactam and amino acid product were found to be greater than 98%. For one example, the bioresolution was optimised to operate at 60 g L?1 substrate concentration with a 20% wt/wt cell paste loading. CONCLUSION: A microorganism, Rhodococcus globerulus (NCIMB 41042), capable of selectively hydrolysing a range of cyclic β‐lactams, has been discovered. A scalable whole‐cell bioresolution process has been developed, leading to the synthesis of multigram quantities of enantiomerically pure β‐lactams and β‐amino acids. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号