共查询到20条相似文献,搜索用时 15 毫秒
1.
The most highlighted point of this work to emphasize is that it is the first trial to use Mn3O4 oxide as a precursor to synthesize orthorhombic LiMnO2 by the hydrothermal method. A well-ordered orthorhombic LiMnO2 phase was formed by the hydrothermal treatment of Mn3O4 with excess LiOH aqueous solution at 170 °C. According to TEM observation, the as-synthesized powder was single crystalline particle oxide. Comparing with other orthorhombic LiMnO2 prepared by low temperature synthetic route and by high temperature calcination, the orthorhombic LiMnO2 prepared by the hydrothermal route showed enhanced battery performance as a lithium battery cathode material. We believe that the new hydrothermal synthesis is expected as an excellent alternative of powder preparation method of high capacity cathode material to be used for Li-ion secondary battery. 相似文献
2.
This paper reports a simple one-step hydrothermal routine to prepare orthorhombic LiMnO2 powder for Li ion battery application. Employing Mn2O3 and LiOH as the starting materials, hydrothermal reaction operated under 160 °C for 12 h generated pure-phased o-LiMnO2 powder. The morphological change and reduction in grain size between the reagent and the resultant were revealed by SEM observation, which indicated that LiOH played two important roles in the process, one as the Li ion source to form orthorhombic LiMnO2 by intercalation and the other as the corrosive medium to control the morphology and reduce the particle size. Detailed investigation showed that the LiOH concentration and the hydrothermal temperature were two key factors influencing phase purity of the final product. Pure-phased o-LiMnO2 prepared under optimized hydrothermal conditions showed higher capacity and better cyclical performance than the commonly prepared o-LiMnO2 powder, and therefore promised potential application for lithium ion secondary batteries. 相似文献
3.
Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries 总被引:1,自引:0,他引:1
Rod-like orthorhombic LiMnO2 nanocrystals were successfully synthesized using temperature-controlled microwave hydrothermal route (TCMH) in a short time (30 min) at a temperature as low as 160 °C. o-LiMnO2 obtained by two different methods was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemistry test. SEM revealed that the product obtained in case of TCMH was rod-like with a diameter of 40 nm, while the nanoparticles with 200 nm diameter were obtained by traditional hydrothermal route (TH). The dramatic formation of o-LiMnO2 in the microwave hydrothermal field influenced the morphology and crystal structure of the final products. The formation and preferred growth orientation mechanism of o-LiMnO2 in the microwave irradiation process was discussed. Electrochemistry performance exhibited that the as-synthesized o-LiMnO2 nanorods reached the maximum discharge capacity of 194.2 mAh g−1 at 0.1 C rate after several cycles between 2.2 and 4.4 V vs. Li+/Li at room temperature, which was higher than the electrochemical performance of o-LiMnO2 obtained by TH. The experimental results showed that the TCMH method provided an effective way for preparing o-LiMnO2 cathode material in lithium-ion batteries. 相似文献
4.
Orthorhombic LiMnO2 nano-particles were successfully prepared under mild hydrothermal conditions from KMnO4 and MnCl2 sources. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the LiMnO2 particles. The influence of the molar ratio of Li/Mn and of the holding temperature was studied. The synthesized nano-particles were found to be highly crystallized with a diameter of 50-100 nm. 相似文献
5.
D. Arumugam 《Electrochimica acta》2010,55(28):8709-8716
LiMn2O4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO2 by a polymeric process, followed by calcination at 850 °C for 6 h in air. The surface-coated LiMn2O4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO2-coated LiMn2O4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn2O4. The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO2 completely coated the surface of the LiMn2O4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO2-coated LiMn2O4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 °C and 60 °C. Among them, the 1.0 wt.% of CeO2-coated spinel LiMn2O4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries. 相似文献
6.
Mixed IrO2-SiO2 oxide films were prepared on titanium substrate by the thermo-decomposition of hexachloroiridate (H2IrCl6) and tetraethoxysilane (TEOS) mixed precursors in organic solvents. The solution chemistry and thermal decomposition kinetics of the mixed precursors were investigated by ultra violet/visible (UV/vis) spectroscopy and thermogravimetry (TGA) and differential thermal analysis (DTA), respectively. The physiochemical characterization of the resulting materials was conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. It is shown from the UV/vis spectra that the electronic absorption intensity of IrCl62− complexes in the precursors decreases in the presence of TEOS, indicating the interaction between these two components. Thermal analysis shows the decomposition reaction of H2IrCl6 is inhibited by TEOS in the low temperature range, but the further oxidation reaction at high temperatures of formed intermediates is independent of the presence of silane component. Physical measurements show a restriction effect of silica on the crystallization and crystal growth processes of IrO2, leading to the formation of finer oxide particles and the porous morphology of the binary oxide films. The porous composite films exhibit high apparent electrocatalytic activity toward the oxygen evolution reaction. In addition, the long-term stability of Ti-supported IrO2 electrodes is found to apparently improve with appropriate amount of SiO2 incorporation, as tested under galvanostatic electrolysis. 相似文献
7.
Uniform crystalline MgSn(OH)6 nanocubes were synthesized by a hydrothermal method. The influences of reaction conditions were investigated and the results showed that the solvent constituents significantly affected the shape and size of MgSn(OH)6·SnO2/Mg2SnO4 has been obtained by thermal treatment at 850 °C for 8 h under a nitrogen atmosphere using MgSn(OH)6 as the precursor. The electrochemical tests of SnO2/Mg2SnO4 revealed that SnO2/Mg2SnO4 has a higher capacity and better cyclability compared to pure SnO2 or Mg2SnO4. The electrochemical performance of SnO2/Mg2SnO4 was sensitive to the size of the nanoparticles. The lithium-driven structural and morphological changes of the electrode after cycling were also studied by the ex-situ XRD pattern and TEM tests. This work indicates that SnO2/Mg2SnO4 is a promising anode material candidate for application in Li-ion batteries. 相似文献
8.
In this paper, a cerium dioxide (CeO2) modified titanium dioxide (TiO2) nanotube array film was fabricated by electrodeposition of CeO2 nanoparticles onto an anodized TiO2 nanotube array. The structural investigation by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that the CeO2 nanoparticles grew uniformly on the walls of the TiO2 nanotubes. The composite was composed of cubic-phase CeO2 crystallites and anatase-phase TiO2 after annealing at 450 °C. The cyclic voltammetry and chronoamperometric charge/discharge measurement results indicated that the CeO2 modification obviously increased the charge storage capacity of the TiO2 nanotubes. The charge transfer process at the surface, that is, the pseudocapacitance, was the dominate mechanism of the charge storage in CeO2-modified TiO2 nanotubes. The greater number of surface active sites resulting from uniform application of the CeO2 nanoparticles to the well-aligned TiO2 nanotubes contributed to the enhancement of the charge storage density. 相似文献
9.
Marcella Bini Stefania Ferrari Doretta Capsoni Vincenzo Massarotti 《Electrochimica acta》2011,(6):267
The role played by the substitution of Mn on the electrochemical behaviour of Li3V2(PO4)3 has been investigated. Independently of the synthesis route, the Mn doping improves the electrochemical features with respect to the undoped samples. Different reasons can be taken into consideration to explain the electrochemical enhancement. In the sol–gel synthesis the capacity slightly enhances due to the Mn substitution on both the V sites, within the solubility limit x = 0.124 in Li3V2−xMnx(PO4)3. In the solid state synthesis the significant capacity enhancement is preferentially due to the microstructural features of the crystallites and to the LiMnPO4 phase formation. 相似文献
10.
Choowong ChaisukAnusara Wehatoranawee Sirichai PreampiyawatSirirat Netiphat Artiwan Shotipruk Okorn Mekasuwandumrong 《Ceramics International》2011,37(5):1459-1463
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band. 相似文献
11.
Preparation of TiO2/SiO2 multilayer flakes and their application to decorative powders were investigated. In contrast to conventional products prepared through the multicoating of core platelets, the coreless TiO2/SiO2 multilayer flakes were prepared by detaching multilayer films from their substrates. These flakes exhibited structural colors, when the optical path length of both the TiO2 and SiO2 layers are adjusted to be one fourth of the wavelength of visible light. A multicoating of more than five layers resulted in the propagation of cracks, which prevented the preparation of thick flakes. Paint films fabricated using the multilayer flakes and acrylic resins showed reflectance spectra that were comparable with those obtained for multicoatings on substrates. 相似文献
12.
Yong Chen Tianmo Liu Chunlin Chen Weiwei Guo Rong Sun Shuhui Lv Mitsuhiro Saito Susumu Tsukimoto Zhongchang Wang 《Ceramics International》2013
We report a synthesis of two types of CeO2 nano-rods via the facile and efficient hydrothermal process free from any surfactant and template. The synthesized nano-rods are chemically identified as CeO2 with the standard fluorite structure but their morphologies are different. The nano-rods prepared with cerium nitrate hexahydrate and sodium phosphate are thicker and shorter with diameter of ∼30 nm and length of ∼100 nm, and those prepared with cerium acetate hydrate and dibasic sodium phosphate are thinner and longer with ∼10 nm in diameter and ∼400 nm in length. Microstructural analyses reveal that the two species of nano-rods have low-energy {111} surfaces and grow along the 〈112〉 direction. As a consequence of their morphologies, the two types of synthesized nano-rods exhibit excellent UV-absorption ability in comparison to the irregular CeO2 nanoparticles. 相似文献
13.
George Ting-Kuo Fey P. Muralidharan Cheng-Zhang Lu Yung-Da Cho 《Electrochimica acta》2006,51(23):4850-4858
An enhanced electrochemical performance LiCoO2 cathode was synthesized by coating with various wt.% of La2O3 to the LiCoO2 particle surfaces by a polymeric method, followed by calcination at 923 K for 4 h in air. The surface-coated materials were characterized by XRD, TGA, SEM, TEM, BET and XPS/ESCA techniques. XRD patterns of La2O3-coated LiCoO2 revealed that the coating did not affect the crystal structure, α-NaFeO2, of the cathode material compared to pristine LiCoO2. TEM images showed a compact coating layer on the surface of the core material that had an average thickness of about ∼15 nm. XPS data illustrated that the presence of two different environmental O 1s ions corresponds to the surface-coated La2O3 and core material. The electrochemical performance of the coated materials by galvanostatic cycling studies suggest that 2.0 wt.% coated La2O3 on LiCoO2 improved cycle stability (284 cycles) by a factor of ∼7 times over the pristine LiCoO2 cathode material and also demonstrated excellent cell cycle stability when charged at high voltages (4.4, 4.5 and 4.6 V). Impedance spectroscopy demonstrated that the enhanced performance of the coated materials is attributed to slower impedance growth during the charge-discharge processes. The DSC curve revealed that the exothermic peak corresponding to the release of oxygen at ∼464 K was significantly smaller for the La2O3-coated cathode material and recognized its high thermal stability. 相似文献
14.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle). 相似文献
15.
Cheol-Min Park 《Electrochimica acta》2010,55(17):4987-3681
Intermetallic FeSb2 and CrSb2 and their nanocomposites (FeSb2/C and Sb/Cr3C2/C) were prepared using solid-state routes, such as heat-treatment and high-energy mechanical milling, in order to enhance the electrochemical properties of Sb. These electrodes were tested as anode materials for rechargeable Li-ion batteries. The reaction mechanism of intermetallic FeSb2 and CrSb2 was investigated using ex situ X-ray diffraction and high resolution transmission electron microscopy. The FeSb2/C and Sb/Cr3C2/C nanocomposite electrodes exhibited greatly enhanced electrochemical behaviors compared to the FeSb2 and CrSb2 electrodes. Additionally, the Sb/Cr3C2/C nanocomposite electrode showed a better electrochemical performance than the FeSb2/C nanocomposite electrode. 相似文献
16.
An electrochemical deposition technique based on co-deposition was used to deposit preferentially oriented Bi2Te3 nanostructures (nanofilm, and nanowire). The shared underpotential deposition (UPD) potentials for both Bi and Te co-deposition were determined by cyclic voltammetric measurements. The scanning probe microscopy (scanning tunneling microscopy (STM) and atomic force microscopy (AFM)) and the X-ray diffraction (XRD) data indicated that the electrodeposition of Bi2Te3 results in nanofilm-structured deposits with a preferential orientation at (0 1 5) and nanowired-structured deposits with a preferential orientation at (1 1 0) in acidic and basic (in the presence of ethylenediaminetetraacetic acid (EDTA)) medium, respectively. The results show that the nucleation and growth mechanism follows 3D mode in acidic solutions and 2D mode in basic solution containing EDTA additive. The optical characterization performed by reflection absorption Fourier transform infrared (RA-FTIR) spectroscopy showed that the band gap energy of Bi2Te3 nanostructures depends on the thickness, size, and shape of the nanostructures and the band gap increases as the deposition time decreases. Moreover, the quantum confinement is strengthened in the wire-like deposits relative to the film-like deposits. Energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that Bi2Te3 nanostructures were always in 2:3 stoichiometry, and they were made up of only pure Bi and Te. 相似文献
17.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed. 相似文献
18.
Hyung-Wook Ha 《Electrochimica acta》2006,51(16):3297-3302
CeO2-coated LiCoO2 particles were successfully synthesized by a sol-gel coating of CeO2 on the surface of the LiCoO2 powder and subsequent heat treatment at 700 °C for 5 h. The surface-modified and pristine LiCoO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), slow rate cyclic voltammogram (CV), and differential scanning calorimetry (DSC). Cyclic voltammetry curves suggested that the CeO2 coating suppressed the phase transitions. Unlike pristine LiCoO2, the CeO2-coated LiCoO2 cathode exhibited better capacity retention than the pristine LiCoO2 electrode in the higher cutoff voltage. Differential scanning calorimetric data revealed the higher thermal stability of the CeO2-coated LiCoO2 electrode. 相似文献
19.
Chuer Hyun Moon S.K. Singh Dong Gi Lee Soung Soo Yi Kiwan Jang Jung Hyun Jeong Jong-Seong Bae Dong-Soo Shin 《Ceramics International》2012
Alkaline earth metal gallets have been identified as an important ceramic material. The crystal chemistry of many of these gallets is well explored; however, very rare studies regarding optical properties of rare earth (RE) ions doped in such gallets, particularly in Sr3Ga2O6 host, have been carried out. The present study reports on synthesis and characterization of novel Sr3Ga2O6:Eu3+ phosphors. The phosphors have been synthesized using a conventional solid state reaction method. Crystal structure, morphology and luminescence properties (excitation, emission and CIE coordinate) of these phosphors have been studied as a function of sintering temperature and Eu3+ concentration. X-ray diffraction study reveals that the phosphor sintered at low temperature (900 °C) contains an impurity phase which is removed at higher sintering temperatures and results into cubic crystalline phase of Sr3Ga2O6. Particle size of the phosphor increases with an increase in sintering temperature which results to a red shift in the peak position of excitation band lying in a broad range from 250 to 370 nm. Optimum emission intensity is attained for 0.12 mol% concentration of Eu3+ ions; above this concentration, a quenching in emission intensity is observed. 相似文献
20.
The effect of CeO2 coating on LiFePO4/C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO2 particles distribute on the surface of LiFePO4 without destroying the crystal structure of the bulk material. The CeO2-coated LiFePO4/C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At −20 °C, the CeO2-coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries. 相似文献