首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The electronic properties of a sandwich graphene(N)–Sc–graphene(N) structure and its average adsorption energies after the adsorption of 1, 3, 5, 7, 10, and 14H2 molecules were investigated by first principles. The average binding energies and adsorption distances of Sc atoms at different adsorption sites in N-doped bilayer graphene (N–BLG) were calculated. It was found that Sc atoms located at different adsorption sites of BLG generated metal clusters. The binding energy of the Sc atom located at the TT position of N–BLG (5.19 eV) was higher than the experimental cohesion energy (3.90 eV), and eliminated the impact of metal clusters on adsorption properties. It was found that the G(N)–Sc–G(N) system could stably adsorb 10 hydrogen molecules with an average adsorption energy of 0.24 eV. Therefore, it can be speculated that G(N)–Sc–G(N) is an excellent hydrogen storage material.  相似文献   

14.
15.
16.
17.
In this paper, the hydrogen production and neutronic analysis of the Laser Inertial Confinement Fusion-Fission Engine (LIFE) fusion reactor have been analyzed. The potential of hydrogen production from unit integrated of the reactor with three different hydrogen production methods which has copper-chlorine (Cu–Cl) cycle, cobalt-chlorine (Co–Cl) cycle and sulfur-iodine (S–I) cycle have been investigated. Neutronic performance analysis for various parameters was calculated statically by using Monte Carlo N-Particle Nuclear Code and determined optimum reactor operation conditions. The hydrogen production potential for all conditions was investigated as statically. And also, the production potential with determining optimum conditions was performed over operation plant. Tristructural isotropic (TRISO) coated thorium carbide (ThC) was used as fuel of LIFE fusion reactor. Natural lithium and FLiNaBe (LiF + NaF + BeF2) were used first and second coolant, respectively. In the statistical analysis, effects of ThC fuel ratio, 1st and 2nd coolant zone thicknesses were examined. As a consequence of the neutronic analysis, tritium breeding values and energy multiplication values (M) was attained and according to M values, hydrogen production amount, required thermal power and thermal power ratios were acquired. Among the used hydrogen production methods, Cu–Cl cycle produced the highest hydrogen amount, while the Co–Cl cycle has the lowest H2 amount. At the end of the reactor operation time for determining optimum conditions, the produced hydrogen amounts are 9.00, 4.80 and 7.36 kg/s for Cu–Cl, Co–Cl and S–I cycles, respectively.  相似文献   

18.
Doping Mg(NH2)2–2LiH by Mg2(BH4)2(NH2)2 compound exhibits enhanced hydrogen de/re-hydrogenation performance. The peak width in temperature-programmed desorption (TPD) profile for the Mg(NH2)2–2LiH–0.1Mg2(BH4)2(NH2)2 was remarkably shrunk by 60 °C from that of pristine Mg(NH2)2–2LiH, and the peak temperature was lowered by 12 °C from the latter. Its isothermal dehydrogenation rate was greatly improved by five times from the latter at 200 °C. XRD, FTIR and NMR analyses revealed that a series of reactions occurred in the dehydrogenation of the composite. The prior interaction between LiH and Mg–B–N–H yielded intermediate LiBH4, which subsequently reacted with Mg(NH2)2 and LiH in molar ratio of 1:6:9 to form Li2Mg2(NH)3 and Li4BN3H10 phases. The observed 6Mg(NH2)2–9LiH–LiBH4 combination dominated the hydrogen release and soak in the composite system, and enhanced the kinetics of the system.  相似文献   

19.
Over the past two decades, China's oil demand has risen steeply. In 1990, it was only about 25% higher than that of 1978, the year economic reform was introduced. By 2008, it had reached 396.0 million tons, roughly four times the 1978 level, making China the second largest oil user worldwide. The country became a net oil importer in 1993, and between 1993 and 2008, its net import dependency—a yardstick for energy security—soared from 7.5% to 50.0%. China's increased demand for oil has made the country a global energy player of critical importance. Although the literature on the global implications of China's oil use has proliferated, relatively few studies have attempted to examine “how China uses oil.” Hence, this study covers every oil-consuming facility and sector in China, exploring the patterns of, and factors involved in, oil demand by power plants, oil refineries, heat plants and, gas-works, and industrial, transport, agricultural, household and commercial sectors. It concludes that in virtually all sectors in China, oil demand will grow, with transport and industry leading the way.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号