首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absorption of pure and impure hydrogen in AB5-type metal hydride reactors is experimentally investigated. The process can be divided into three phases: “adiabatic heating” phase, “heat transfer” phase and “end of reaction” phase. Critical phenomenon is observed between “adiabatic heating” and “heat transfer” phases. The crisis occurs when temperature of metal hydride bed reaches maximum, which is close to equilibrium temperature for inlet pressure, and is followed by significant slowdown of the reaction rate. Presence and accumulation of impurities in the voids of metal hydride bed precipitates crisis due to decreasing of hydrogen partial pressure. Two strategies of hydrogen purification with the aid of metal hydrides are discussed. Mixture filtration through the metal hydride bed is recommended for high concentration of impurities and PSA (or TSA) suits for nearly pure hydrogen.  相似文献   

2.
In this paper, a three-dimensional model for hydrogen absorption in a metal alloy has been developed, validated against the experimental data in the literature, and then applied to a novel design for a hydrogen storage unit. The proposed design is similar to the fuel cell stack, but here the Membrane Electrode Assembly (MEA) has been replaced by a metal hydride (MH) reactor placed between the flow-field plates. These are stacked together to achieve the required amount of hydrogen storage. The flow-field plates have channels engraved on one side for hydrogen supply and on the other, for coolant/heating medium. It is known that the effectiveness of a hydrogen storage unit is directly related to its heat transfer area, and therefore, the choice of its geometry is very important. The larger the size, the more the resistance to heat transfer. Although, the internal tubular heat exchangers have proven to be effective in heat transfer, they pose severe challenges such as cooling/heating medium leakage due to tube erosion, stresses generated, etc. and they displace the active metal hydride from the tank. The present stacked MH reactor configuration helps to overcome these challenges by stacking small MH reactors together and there is no chance of the cooling/heating medium leaking into the metal hydride. Numerical simulations were performed to investigate the effect of coolant flow rate and percentage of flow-field plate rib area exposed to the MH reactor on temperature evolution and the amount of hydrogen stored. Further, a detailed study was carried out to understand the effect of compartmentalization of the MH reactor on temperature distribution. The results revealed that compartmentalization substantially helps to uniformly distribute the temperature in the metal bed, which is very important to maintain uniform utilization of the metal powder. Consequently, the uniform metal powder density for repeated absorption-desorption cycles without significant loss of its hydrogen storage capabilities.  相似文献   

3.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation.  相似文献   

4.
This paper presents a numerical work aiming at the prediction of the characteristics of an industrial tank filled with hydrides for hydrogen storage. A validation of the method is given and is followed by the resolution of an example which shows the importance of achieving a three-dimensional modelling for the design of an industrial tank. Finally, recent results obtained on a magnesium hydride laboratory tank are given.  相似文献   

5.
The metal hydride reactor filled with 5 kg of the AB5-type (LaFe0.5Mn0.3Ni4.8) alloy was investigated with respect to the hydrogen discharge rates classified using C-rate value, which is discharge of the maximum hydrogen capacity 750 st L within 1 h. The reactor cannot be fully discharged with a constant flow rate, for each temperature of hot water and flow rate there exists a moment of crisis at which the hydrogen flow drops under the constant value. The nominal capacity of the reactor reaches 80% of maximum capacity if sufficient heat transfer is provided. The simple balance model of a metal hydride reactor is developed based on the assumption of uniform temperature and pressure inside a metal hydride bed. The model permits to predict behavior of the metal hydride reactor in different operation regimes, quantitative agreement is obtained for low C-rates (less than 4) and sub-critical modes.  相似文献   

6.
The storage of hydrogen in hydride materials is currently much researched as a mean of energy storage. This reversible storage is achieved by successive hydriding and dehydriding reactions. During these reactions, the material undergoes structural transformations which result in swelling of the hydride powder grains due to the absorption of hydrogen. This phenomenon can generate major mechanical stresses on the cell containing the hydride. The present experimental study examines the cyclic swelling of a granular bed consisting of hydride Ti–Cr–V + Zr–Ni. Two superimposed phenomena are identified: a cyclic rearrangement causing a reduction and then an increase in porosity coupled with gradual densification of the stack.  相似文献   

7.
8.
In this paper, hydriding in a cylindrical metal hydride hydrogen storage tank containing HWT5800 (Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5) is numerically studied with a two-dimensional mathematical model. The heat and mass transfer of this model is computed by finite difference method. The effects of supply pressure, cooling fluid temperature, overall heat transfer coefficient and height to the radius ratio of the tank (H/R) on the hydriding in the hydrogen storage tank are studied. It is found that hydride formation initially takes place uniformly all over the bed and hydriding processes take place at a slower rate at the core region. Supply pressure, cooling fluid temperature and overall heat transfer coefficient play significant roles during the absorption of hydrogen. At the H/R = 2 both maximum bed temperature and the average bed temperature are the highest, and the hydride bed takes the longest time to saturate.  相似文献   

9.
A novel method to improve the hydrogen absorption rate in a metal hydride tank is proposed by introducing physical mixing of the metal hydride powder to promote heat removal and accelerate the kinetics of the hydriding process. Experiments were conducted with and without mixing to demonstrate that the hydrogen absorption rate can be improved significantly by mixing. Mixing was achieved by tilting the cylindrical metal hydride tank back and forth by 90° during charging. A mathematical model was also developed to simulate the effects of physical mixing. The model results indicate that physical mixing enhances heat transfer by redistributing the hydride powder from the hot core to the boundary and facilitates heat removal by convection at the tank walls. After validating the model against experimental results, the effect of physical mixing on accelerating hydrogen storage was explored by changing the mixing rate and the convection coefficient at the tank wall, and by increasing the thermal conductivity of the hydride bed by adding aluminum foam. It was found that while higher mixing rates generally improve the absorption rate, the benefits of mixing are reduced for higher convection coefficients, and for higher weight fractions of Al foam. Simulations were also conducted with and without mixing as a function of tank size. The results show that the benefit of physical mixing increases with tank size.  相似文献   

10.
In this paper, a three-dimensional hydrogen absorption model is developed to precisely study the hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed 3D simulation results show that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that hydrogen absorption is very efficient early during the hydriding process; thus, the local cooling effect is not influential. On the other hand, non-uniform distributions are predicted at the subsequent absorption stage, which is mainly due to differential degrees of cooling between the vessel wall and core regions. In addition, a parametric study is carried out for various designs and hydrogen feed pressures. This numerical study provides a fundamental understanding of the detailed heat and mass transfer phenomena during the hydrogen absorption process and further indicates that efficient design of the storage vessel and cooling system is critical to achieve rapid hydrogen charging performance.  相似文献   

11.
Complex hydrides are identified as promising hydrogen storage media with gravimetric capacities up to 10 wt.%. However, the high temperatures required for the initiation of their hydrogen charging process and their slow kinetics prevent their integration in many practical applications. This paper discusses the challenge of addressing these issues by combining this kind of materials with the appropriate metal hydrides. For this purpose, the complex hydride, 2LiNH2–1.1MgH2–0.1LiBH4–3 wt.% ZrCoH3 (CxH) and the metal hydride, LaNi4.3Al0.4Mn0.3 (MeH) have been selected as reference materials. The studied configuration corresponds to a tubular reactor where the metal hydride and the complex hydride, separated by a gas permeable layer, are embedded respectively in the centre and the annular ring of the reactor. A 1-dimensional finite element model and a dimensionless number comparing the dominance of the kinetics and the heat transfer processes have been developed to optimize the charging process for different thicknesses and volumetric ratios of the studied materials. For the selected cases, the influence of the thermal properties of the complex hydride and the operating conditions on the charging process is assessed. A sensitivity study has shown that the thermal conductivity of the CxH is the most important parameter influencing the hydrogen storage rate if thick MeH and CxH beds are considered. In contrast, the hydrogen loading time is significantly improved by increasing the coolant temperature for small thicknesses of the two storage media. Thereafter, the gravimetric and volumetric capacities resulting from the scale up of the optimized configurations to store 1 kg of hydrogen are calculated and results are discussed taking into account the interdependence of the different studied parameters.  相似文献   

12.
Heat and mass transfer, fluid flow and chemical reactions in a hydride bed are numerically investigated with a general purpose PHOENICS code. Hydride formation takes place faster near the cooled boundary walls and slower around the core region of the bed. It is found that fluid flow affects the temperature distribution in the system, however, it does not significantly improve the amount of hydrogen absorbed.  相似文献   

13.
A Round Robin Test exercise on magnesium hydride (MgH2) was performed by 14 laboratories with the aim to compare experimental isothermal data such PCI curves, kinetics curves and formation enthalpies together with a basic statistical evaluation of the results.  相似文献   

14.
An experimental formula for estimating porosity in a metal hydride packed bed is presented. The formula was developed by direct observation of the volume changes of a metal hydride packed bed under free expansion in a vessel. The experimental results showed that the cycles of expansion and contraction were repeated at large porosities above 60% after a rapid state change caused by early particle breakup. The formula for porosity was expressed as a function of the reacted fraction and as a function of the cycle number. The function formula of the reacted fraction can be used to compute different values of porosity for expansion by absorption and for contraction by desorption. The coefficients assuming 100% hydrogen storage based on the experiments with LaNi5 were an expansion ratio of 16.7% and a contraction ratio of 8.4%, on average. This experimental porosity formula is useful for effective thermal conductivity calculations and for numerical simulations of metal hydride packed bed behavior.  相似文献   

15.
Phase change materials (PCMs) have recently been coupled with metal hydride storage tanks (MHSTs) to store adsorption heat and subsequently deliver it for hydrogen desorption through melting and solidification cycles. This method might reduce process costs by eliminating the use of HTF (i.e. heat transfer fluid). However, thermodynamics and kinetic data are scarce for large-scale MH-PCM applications, particularly when PCM is loaded in metal foams (MFs) to promote heat transfer. The current work aimed to develop a 2D model for simulating H2-absorption in a LaNi5-metal bed integrating a PCM-MF unit in a large-scale tube-and-shell heat exchanger. The constructed model (via Fluent 15.0 CFD-platform) was first-validated using referenced experimental data. The resulting heat transfer was analyzed for different MFs [aluminum, copper, nickel and titanium] of different porosities (0.1–1.0). Excellent outcomes were retrieved. By trapping the H2-absorption heat, the MF-PCM unit improved the LaNi5 hydriding. The LaNi5 charging was achieved after ~500 s, independently of the MF type and porosity. The PCM melting rate depends on tube position, porosity and the MF type. It increased with MFs incorporation (order of enhancement: Cu > Al > Ni > Ti) and MF-porosity decrease (from ε = 100% to 10%). Besides, the PCM tube above the H2-feeding pipe melts more quickly than the other tubes, presumably to the gravitational-force effect. Longer times (i.e. 9 000 s to >16 000 s, depending on tube position) were recorded for complete melting of the PCM when εMF = 100%; however, when εMF is less than 80%, the required time for total melting was tremendously reduced to less than 500 s. Nevertheless, the MFs porosity could not be decreased considerably to avoid a huge loss of material storage (PCM), thereby diminishing the thermal storage performance of the PCM matrix.  相似文献   

16.
The authors presented a basic mathematical model for estimating peak overpressure attained in vented explosions of hydrogen in a previous study (Sinha et al. [1]). The model focussed on idealized cases of hydrogen, and was not applicable for realistic accidental scenarios like presence of obstacles, initial turbulent mixture, etc. In the present study, the underlying framework of the model is reformulated to overcome these limitations. The flame shape computations are simplified. A more accurate and simpler formulation for venting is also introduced. Further, by using simplifying assumptions and algebraic manipulations, the detailed model consisting of several equations is reduced to a single equation with only four parameters. Two of these parameters depend only on fuel properties and a standard table provided in the Appendix can be used. Therefore, to compute the overpressure, only the two parameters based on enclosure geometry need to be evaluated. This greatly simplifies the model and calculation effort. Also, since the focus of previous investigation was hydrogen, properties of hydrocarbon fuels, which are much more widely used, were not accounted for. The present model also accounts for thermo-physical properties of hydrocarbons and provides table for fuel parameters to be used in the final equation for propane and methane. The model is also improved by addition of different sub-models to account for various realistic accidental scenarios. Moreover, no adjustable parameters are used; the same equation is used for all conditions and all gases. Predictions from this simplified model are compared with experimentally measured values of overpressure for hydrogen and hydrocarbons and found to be in good agreement. First the results from experiments focussing on idealized conditions of uniformly mixed fuel in an empty enclosure under quiescent conditions are considered. Further the model applicability is also tested for realistic conditions of accidental explosion consisting of obstacles inside the enclosure, non-uniform fuel distribution, initial turbulent mixture, etc. For all the cases tested, the new simple model is found to produce reasonably good predictions.  相似文献   

17.
18.
In order to formulate an empirical correlation to evaluate the debris dispersal fraction from a reactor cavity during high pressure melt ejection (HPME) accident in Nuclear Power Plants, a number of low temperature simulant experiments employing mocks-up of reactor cavities have been performed. Due to the dependency of the debris dispersal process on the cavity geometry, the experimental data from a specific cavity geometry show a limitation for their application to different cavity configurations. To predict the debris dispersal fraction for different types of cavity geometry, a new correlation has been developed, which includes geometric parameters explicitly. It is found that important parameters in the debris dispersal process from the cavity are the available entrainment time as well as the particle flight time. For validation of the proposed correlation, a series of experiments varying geometric factors of the cavity flow area and the cavity exit height have been carried out in two scaled-down HPME facilities. The experimental results show good agreement with the predictions by the developed correlation.  相似文献   

19.
We have been performing research on the Totalized Hydrogen Energy Utilization System (THEUS) which has applications to commercial buildings and a planned added function of supplying energy to stations for hydrogen and electric vehicles. In that case we will utilize liquid hydrogen transported from a hydrogen station and all Boil-Off Gas (BOG) will be recovered in THEUS’s metal hydride tanks. It is known that BOG is chiefly composed of para-hydrogen, which has different thermo-physical properties from normal hydrogen. It has been reported that some metal hydride alloys work as a catalyst to accelerate the para-ortho conversion and the conversion proceeds relatively fast in the case of La–Ni5. The conversion is considered to be an endothermic reaction. A misch metal (Mm)-Ni5 metal hydride alloy, which contained La and Ni, was used in our THEUS metal hydride tank. To examine the effect of the para-ortho conversion on the THEUS operation, we investigated the absorption/desorption characteristics of the metal hydride tank with BOG. We confirmed that the effect of the heat of conversion was very small and BOG could be treated as normal hydrogen for practical application.  相似文献   

20.
In this study, a performance analysis of metal hydride reactors (MHRs) based hydrogen storage during absorption process is presented. The study shows the effect of using heat pipe and fins for enhancing heat transfer inside MHRs at various hydrogen supply pressures. Three different cylindrical MHR configurations using LaNi5 as a storage media were adopted including: i) reactor cooled by means of natural convection, ii) reactor equipped with a heat pipe along its central axis, iii) reactor equipped with finned heat pipe. A 3-D mathematical model is developed and utilized to simulate the thermofluidynamic behaviour of a metal hydride bed. The simulation study is conducted by solving simultaneously the energy, mass, momentum, and kinetic differential equations of conservation by using COMSOL multiphysics 5.2a software. Parameters such as hydrogen stored capacity, internal temperature distribution for the reactor, and their duration have been optimized. The model was validated against experimental result which have been previously published by the authors. The obtained results confirmed that the simulation and experimental results reasonably match where the maximum error vlaue was less than 8% at 10-bar hydrogen supply pressure, which proves that the model has efficiently captured the key experimental trends. On the other hand, the MHR design, which is equipped with a finned heat pipe is shown a superior performance as compared to all the other tested configurations in terms of charging time and storage capacity. Therefore, the model can be used as a helpful tool in the optimization of the MHR designs and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号