首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Thermal Engineering》2002,22(14):1643-1660
The thermal design of multi-stream heat exchangers of the plate and fin type is presented. Although originally used in low temperature processes, their application is extrapolated to above temperature processes and it is shown that, conceptually, multi-stream exchangers could replace whole heat recovery networks. The approach is based on the use of temperature vs. enthalpy diagrams or composite curves, which show how a multi-stream exchanger can be subdivided into block sections that correspond to enthalpy intervals and indicate the entry and exit points of the streams. A design methodology for plate and fin exchangers in countercurrent arrangement, characterized by the maximization of allowable pressure as a design objective is extended to the design of multi-fluid exchangers. The methodology uses a thermo-hydraulic model which relates pressure drop, heat transfer coefficient and exchanger volume. The potential applicability of the methodology is demonstrated on a case study.  相似文献   

2.
In heat exchanger network synthesis, important features like pressure drop and fouling effects are usually neglected. In this work a new methodology is proposed to include these effects in grassroots as in retrofit designs. Heat exchangers are detailed designed during the heat exchanger network synthesis. Pinch analysis is used to obtain the heat exchangers network with the maximum energy recovery, and a new systematic procedure is proposed to the identification and loop breaking. Bell–Delaware method for the shell side is used to design the heat exchangers. An example of the literature was studied and the results show differences between heat exchangers, with and without the detailed design, relative to heat transfer area, fouling and pressure drop. The great contribution of this work is that individual and global heat transfer coefficients are always calculated, in despite of the current literature, where these value are assumed in the design step. Moreover, the methodology proposed to the heat exchangers design assures the minor heat exchanger according to TEMA standards, contributing to the minimisation of the heat exchanger network global annual cost. Finely, the new heat exchanger network considering pressure drops and fouling effects presents values more realistic then those one neglecting the equipment detailed design.  相似文献   

3.
建立了基于分级超结构模型的换热网络改造同步优化数学模型。该模型不依赖于夹点约束,不需要预先给定最小传热温差,能够有效权衡改造投资费用与运行费用之间的关系。改造投资费用中考虑了现有换热器的重新配置费用、现有换热器新增传热面积费用和新增换热器费用,符合工程实际要求。针对换热网络改造优化数学模型具有不连续和非线性的特点,数学模型的求解采用双层优化策略,其中表示网络结构调整的离散变量优化利用遗传算法,而表示操作参数的连续变量优化利用粒子群算法优化。2个不同规模的换热网络改造算例用于验证所提出方法的有效性。  相似文献   

4.
Due to hardness of cold water supply in many countries, there is a risk of fouling in domestic hot water (DHW) counterflow plate heat exchangers. The scaling will result in increased resistance to heat transfer, which has negative effects on the economics of the district heating network. A common approach is to clean or change the heat exchanger periodically, which can be expensive if only limited fouling has occurred (unnecessary) or if a higher than expected scaling layer has formed (inefficiency). A better approach is to monitor the state of the heat exchangers and clean them when actually required. This would result in more energy-efficient operation and provide an optimum schedule for heat exchanger cleaning. This can be simple if the heat exchangers are operating under steady-state conditions; however, if large variations in the inlets are experienced, as is the case with the mass flows in DHW heat exchangers, it quickly becomes impossible with standard methods. In this paper it is proposed to monitor the state of the heat exchanger online by using measurements that are easily obtainable under normal operation and applying fast mathematical models to estimate the overall heat transfer coefficient of the heat exchanger. The results show that the methods proposed can be used to detect fouling in DHW heat exchangers.  相似文献   

5.
Yanhua Lai  Mingxin Lu  Qingwei Wang 《传热工程》2014,35(11-12):1137-1143
Plate-fin and tube heat exchangers are extensively studied both experimentally and numerically. However, data on the fluid flow and heat transfer in the exchanger passage with small diameter tubes have not been accumulated enough. With a large eddy simulation technique (LES), this study performs a detailed investigation of the fluid flow and heat transfer in a plate-and-tube channel with tubes of diameters as small as 5.2 mm. The conservation equations for mass, heat, and momentum were solved by the proposed LES model. It was found that the LES model is appropriate to predict the fluid flow and heat transfer. Compared to heat exchangers of larges tubes, the heat exchangers exhibit much higher heat transfer coefficients with small tubes. The fin efficiencies are improved with small tubes.  相似文献   

6.
This study aims to assess for a Stirling engine the influence of the overall heat transfer coefficient variation on the optimum state and on the optimum distribution of the heat transfer surface conductance or area among the machine heat exchangers. The analysis is based on a Stirling machine optimization method, previously elaborated, which is now applied to a cycle with total heat regeneration. The method was conceived for an irreversible cycle with heat transfer across temperature differences at the source and the sink, and heat losses between the hot-end and the cold-end of the engine. Source and sink of finite thermal capacity as well as thermostats are considered. The new approach considers a linear variation of the overall heat transfer coefficient of the machine heat exchangers with respect to the local temperature difference. A comparison of the optimum state and the optimum distribution of the heat transfer surface conductance or area among the heater and the cooler is made for several cases.  相似文献   

7.
A rapid sizing methodology for compact heat exchangers of the spiral plate type is presented. The methodology allows for the determination of the exchanger geometry such that full pressure drop utilization is achieved on both streams. This is done by considering plate width and plate spacing as continuous variables. The resulting values are the basis for selecting the final exchanger dimensions according to standard dimensions. The design approach makes use of empirical correlations for the calculation of heat transfer coefficient and friction factor based on average curvature. The approach is demonstrated using two case studies.  相似文献   

8.
Two-phase flow analysis for the evaporation and condensation of refrigerants within the minichannel plate heat exchangers is an area of ongoing research, as reported in the literatures reviewed in this article. The previous studies mostly correlated the two-phase heat transfer and pressure drop in these minichannel heat exchangers using theories and empirical correlations that had previously been established for two-phase flows in conventional macrochannels. However, the two-phase flow characteristics within micro/minichannels may be more sophisticated than conventional macrochannels, and the empirical correlations for one scale may not work for the other one. The objective of this study is to investigate the parameters that affect the two-phase heat transfer within the minichannel plate heat exchangers, and to utilize the dimensional analysis technique to develop appropriate correlations. For this purpose, thermo-hydrodynamic performance of three minichannel brazed-type plate heat exchangers was analyzed experimentally in this study. These heat exchangers were used as the evaporator and condenser of an automotive refrigeration system where the refrigerant R-134a flowed on one side and a 50% glycol–water mixture on the other side in a counter-flow configuration. The heat transfer coefficient for the single-phase flow of the glycol–water mixture was first obtained using a modified Wilson plot technique. The results from the single-phase flow analysis were then used in the two-phase flow analysis, and correlations for the refrigerant evaporation and condensation heat transfer were developed. Correlations for the single-phase and two-phase Fanning friction factors were also obtained based on a homogenous model. The results of this study showed that the two-phase theories and correlations that were established for conventional macrochannel heat exchangers may not hold for the minichannel heat exchangers used in this study.  相似文献   

9.

This paper presents a general design methodology for multistream plate-fin heat exchangers that incorporates the consideration of operability aspects through the manipulation of stream flow passage arrangement. The main features of the design approach are uniform heat load per passage and secondary surface or fin selection. Surface selection is implemented as a means to achieve uniformity in the heat transfer rate of the various streams that take part in the heat exchange process. Uniform heat load content per passage is a design consideration through which an equal number of hot and cold passages is achieved. Under these conditions, the number of passages allocated to a given stream is directly proportional to its heat capacity mass flow rate. A simple model for the steady-state simulation of multistream exchangers is also presented. This model can be used to determine the exchanger response to changes in temperature and flow rate that may take place during operation. Results indicate that flow passage arrangement is a design consideration that can be manipulated to reduce the effect of these types of disturbances upon the target temperatures of specific streams.  相似文献   

10.
Laminar forced flow and heat mass transfer in sinusoidal plate-fin small passages encountered in compact heat mass exchangers are investigated. The duct is similar to a traditional plate-fin heat exchanger, but vapor-permeable materials like polymer membranes, paper, and ceramics can be used as the duct materials so both sensible heat and moisture can be exchanged simultaneously. Heat conduction and mass diffusion in the fins and heat and moisture convection in the fluid are analyzed simultaneously as a conjugate problem. Their fully developed Nusselt and Sherwood numbers under various aspect ratios and fin conductance parameters are calculated. The results found that though fins extend the heat transfer area, they are less effective compared to a traditional compact heat exchanger with metal foils. Most unfortunately, fin efficiencies for moisture transfer are even much smaller than those for heat transfer due to the low fin mass conductance parameters. For such heat mass exchangers, the use of fins can be regarded mostly as supporting materials, rather than as mass intensification techniques.  相似文献   

11.
A steady-state performance model of multirow multipass cross-flow tubular heat exchangers is developed. The proposed matrix approach uses the concepts of local effectiveness, energy balance, and number of transfer units (NTU) applied to every pass/row in the cross-flow heat exchanger to predict thermal performance. The method can predict the total effectiveness of assemblies of heat exchangers. Several circuiting configurations, such as overall counter-cross-flow, overall parallel cross-flow, and fluids in parallel in one of the streams, were considered. Predictions of the steady heat transfer performance of selected multirow multipass cross-flow heat exchangers are obtained by applying the general matrix approach. The heat exchanger geometries selected for the comparative study represent common cross-flow heat exchanger configurations used in industry. For these heat exchangers the overall heat exchanger effectiveness values were computed for various capacity rate ratios and NTU values. The validity of the matrix approach was then verified by comparing the resulting predictions with those obtained using the P-NTU approach and the Domingos method for the selected complex cross-flow heat exchanger configurations.  相似文献   

12.
This paper focuses on the heat transfer analysis of compact heat exchangers through artificial neural network (ANN). The ANN analysis includes heat transfer coefficient, pressure drop and Nusselt number in the compact heat exchangers by using available experimental results in a case study. In this study, data sets are established in 15 different test channel configurations. A feed‐forward back‐propagation algorithm is used in the learning process and testing the network. The learning process is applied to correlate the heat transfer analysis for different ratios of rib spacing and height, various Reynolds numbers, different inlet–outlet temperatures, heat transfer areas and hydraulic diameters. Various hidden numbers of the network are trained for the best prediction of the heat transfer analysis. Heat transfer coefficient, pressure drop and Nusselt number values are predicted by the network algorithm. The results are then compared with the experimental results of the case. The trained ANN results perform well in predicting the heat transfer coefficient, pressure drop and Nusselt number with an average absolute mean relative error of less than 6% compared with the experimental results for staggered cylindrical ribbed and staggered triangular ribbed of test channels in the case study. The ANN approach is found to be a suitable method for heat transfer analysis in compact heat exchangers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This article deals with a new steady-state formulation of temperatures along a double-pipe heat exchanger in counterflow configuration when the mass flow rate is submitted to step change. The steady-state method is based on estimation of the exponential factor of temperature profile. This method, compared to results obtained from correlations, gives an alternative approach to the well-known procedures for sizing and rating heat exchangers in industrial applications, such as the k -NTU and LMTD methods. It is based on the average convective heat transfer coefficients of the hot and cold sides, while the other methods are based on the overall heat transfer coefficient.  相似文献   

14.
An experimental investigation of evaporative effectiveness and mass transfer coefficient on a bundle of tubes of an evaporative tubular heat dissipator is presented. Based on the experiments, correlations of evaporative effectiveness and mass transfer coefficient are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using design of experiment approach by selecting central composite design of a response surface methodology. Results shown in this article indicate that as the cooling film flow rate increases, evaporative effectiveness and mass transfer coefficient increases provided that the air flow rate is constant which is flowing from underneath the tubes of the evaporative tubular heat dissipator. Derived correlations are helpful in improvement of the design of heat transfer devices and many other engineering applications. Consideration of relative humidity of upstreaming air as one of the operating variables leads to the contribution to heat and mass transfer study of evaporative tubular heat dissipators in the present investigation.  相似文献   

15.
The present paper points out that the selection of elements for heat transfer enhancement in heat exchangers requires a methodology to make a direct comparison of the performances of heat exchanger surfaces with different elements. Methods of comparison used in the past are, in many respects, approximate and hence fail to predict accurately the relative performance of conventional heat exchanger surfaces operated with different heat exchanger elements. Owing to the direct use of the Colburn factor for performance assessment, these methods over-predict the relative performance of heat exchangers. In the present paper, a more consistent comparison method is presented and is demonstrated to work by comparison of the performance of an experimentally investigated pin fin heat exchanger with that of a smooth pipe heat exchanger. The method yields results that belong to the volume goodness factors group. It represents a practical approach, as it is applicable to all kinds of heat exchanger surfaces and does not require the conversion of the experimental data in terms of Nusselt number and friction factor for comparison purposes. The present work demonstrates that the suggested method can also be used for performance comparison of existing heat exchanger surfaces with available heat transfer and pressure loss data.  相似文献   

16.
The article analyzes convective heat and mass transfer in the flow passages of tube-fin exchangers, adopting a simplified two-dimensional approach. The flow structure on the airside of these devices is spatially periodic, with fully developed conditions prevailing a short distance from the entrance. In numerical simulations, symmetric and/or antisymmetric periodicity in pressure, velocity components, temperature, and mass concentration of the water vapour are taken into account to reduce the computational domain. Using a finite-element discretization velocity, temperature and mass concentration fields are computed within wavy, offset-strip, and louver fin surfaces. Quantitative results are also obtained for friction factors, Nusselt numbers, and Colburn factors for heat and mass transfer.  相似文献   

17.
This study presents an artificial neural network approach in combination with numerical methods to calculate the heat transfer area assuming a nonlinear variation of the global heat transfer coefficient as a consequence of the thermophysical properties of the fluids, the geometry of the surfaces, and other factors. The development of the article is presented in two applications. The first application takes up the database described by Allan P. Colburn, four possibilities are proposed using functions from the field of artificial neural networks to create several approaches. The second application is presented to verify the goodness of the proposed methodology, the artificial neural network model is applied in an experimental data set of double-pipe vertical heat exchangers, the comparison between the calculated and experimental heat transfer area shows a relative percentage error smaller than 2.8%. The results in the applications are evidence of the competitiveness of the artificial neural network for the prediction of the heat transfer area considering a variable overall heat transfer coefficient.  相似文献   

18.
肖洪 《节能技术》2006,24(3):265-267
本文对椭圆管与扁管管板式换热器的充分发展的周期性层流流动与换热特性进行了数值计算分析,给出了在400相似文献   

19.
A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed. Effectiveness-number of transfer units (ε-NTU) data for several standard and complex flow arrangements are obtained using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow heat exchangers with one to four rows and with approximate series solution for an unmixed-unmixed heat exchanger, obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided.  相似文献   

20.
An air-side data analysis method is developed for flat-tube heat exchangers under partially wet conditions. In order to simplify the combined sensible and latent heat transfer, it is assumed that condensate drainage paths develop such that, at steady state, water does not spread to noncondensing surfaces, which therefore remain dry. The air dew point is compared to local fin-tip and fin-base temperatures, and a partially wet flat-tube heat exchanger is partitioned into fully wet, partially wet, and dry-fin regions, which are subsequently analyzed as separate heat exchangers. Using an enthalpy-based effectiveness–NTU (number of transfer units) method, average fin efficiency is calculated for each region, and the locations of region boundaries are determined iteratively. The proposed data analysis method is demonstrated with experimental data for a flat-tube louver-fin heat exchanger under various latent loads. The general approach presented can be extended to other heat exchanger geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号