首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper is the first of a two-part study concerning the dynamics of heat transfer during nucleation process of saturated FC-72 liquid. Experimental results discussed in this paper provide new physical insight on the nature of heat transfer events at the nucleation site during the nucleate boiling process. The thermal field underneath a bubble during the boiling of FC-72 was measured with a spatial resolution of 22--40 μm. The time period of activation, area of influence, and magnitude of three different mechanisms of heat transfer active at the nucleation site were determined. These mechanisms consisted of: (1) microlayer evaporation following the rapid bubble expansion, (2) transient conduction due to rewetting of the surface during bubble departure, and (3) microconvection in the region external to the bubble/surface contact area. The area of influence of the transient conduction mechanism was found to be limited to the bubble/surface contact area, with most of the heat transfer occurring prior to the bubble detachment from the surface. The microconvection heat transfer mechanism was localized primarily outside the contact area and was found to be steady in nature. All three mechanisms of heat transfer were found to make significant contributions to the total surface heat transfer. The second part of this study provides the theoretical analysis of the results.  相似文献   

2.
An analytical model for transient pool boiling heat transfer was developed in this study. The boiling curves of the transient boiling were obtained based on the microlayer model proposed by the authors and the mechanism of transition from the non-boiling regime to film boiling, i.e., direct transition was theoretically examined. Since the nucleate boiling heat flux is mainly due to the evaporation of the microlayer and its initial thickness decreases rapidly with increasing superheat, the duration of nucleate boiling is markedly decreased as the incipient boiling superheat is increased. It is found that the direct transition is closely connected to the rapid dryout of the microlayer which occupies almost the whole surface at high wall superheat.  相似文献   

3.
Pool boiling on surfaces where sliding bubble mechanism plays an important role has been studied. The heat transfer phenomenon for such cases has been analysed. The model considers different mechanisms such as latent heat transfer due to microlayer evaporation, transient conduction due to thermal boundary layer reformation, natural convection and heat transfer due to the sliding bubbles. Both microlayer evaporation and transient conduction take place during the sliding of bubbles, which occurs in geometries such as inclined surfaces and horizontal tubes. The model has been validated against experimental results from literature for water, refrigerant R134a and propane. The model was found to agree well for these fluids over a wide range of pressures. The model shows the importance of the contributions of the different mechanisms for different fluids, wall superheats and pressures.  相似文献   

4.
A new dynamic microlayer model has been proposed to predict theoretically the heat flux in fully developed nucleate boiling regions including critical heat flux (CHF). In this model, the heat transfer with boiling is mainly attributed to the evaporation of the microlayers which are periodically formed while the individual bubbles are forming. Since the initial microlayer thickness becomes thinner with the increase of wall superheat, both the local evaporation and the partial dryout speed of the microlayer increase. As a result, the time-averaged heat flux during the period of individual bubble has a maximum point, the CHF, at the predicted continuous boiling curve.  相似文献   

5.
Flow boiling in microchannels has received considerable attention from researchers worldwide in the last decade. A scaling analysis is presented to identify the relative effects of different forces on the boiling process at microscale. Based on this scaling analysis, the flow pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight gained through the careful visualization and thermal measurements by previous investigators, similarities between heat transfer around a nucleating bubble in pool boiling and in the elongated bubble/slug flow pattern in flow boiling are brought out. The roles of microlayer evaporation and transient conduction/microconvection are discussed. Furthermore, it is pointed out that the convective contribution cannot be ruled out on the basis of experimental data which shows no dependence of heat transfer coefficient on mass flow rate, since the low liquid flow rate during flow boiling in microchannels at low qualities leads to laminar flow, where heat transfer coefficient is essentially independent of the mass flow rate. Specific suggestions for future research to enhance the boiling heat transfer in microchannels are also provided.  相似文献   

6.
An experimental study was conducted to investigate transient local heat transfer around a bubble at onset of boiling on a thin glass heating plate immersed in saturated n-hexane at low pressure. Eight rapid response Cu-Ni thermocouples consisting of a vacuum deposited thin film were used to measure the temperature change of the heating surface. Simultaneous high-speed video photographs were also obtained. The surface temperatures near a nucleation site decreased rapidly owing to the evaporation of a thin layer (microlayer) of liquid formed beneath the bubble in the early period and the rate of bubble growth increased with increasing incipient boiling superheat (ΔTIB). The thickness of the microlayer decreased markedly with increasing ΔTIB. © 1998 Scripta Technica, Heat Trans Jpn Res, 26(7): 484–492, 1997  相似文献   

7.
The conjugate heat transfer of flow boiling in a rectangular microchannel heat sink (MCHS) was modelled numerically to investigate the hydrodynamics and thermal responses of flow prior to the onset of nucleate boiling (ONB). Local hydrodynamics and thermal conditions leading to ONB are analysed numerically for different heat flux. The flow patterns of different modes of microconvection and mixed convective flows including the circulating flow, wavy flow and seeping flow were demonstrated and discussed. The numerical study proposes the mechanism leading to the first bubble nucleation which cover the initiation of fluid instability until the ONB. This work provides better understanding of the superheat induced flow instability and the progressive fluid convection under transient heating.  相似文献   

8.
9.
A mathematical model of evaporation and condensation heat transfer in a copper-water wicked heat pipe with a sintered-grooved composite wick is developed and compared with experiments. The wall temperatures are measured under different input power levels and working temperature conditions. The results show that the heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The experimental data for the boiling heat transfer are well correlated by the theory of Stralen and Cole. Higher heat load drives the heat pipe to spend more time achieving the equilibrium state during the transient start-up process. The response curves of the evaporator thermal resistance are overlapped, and the condenser thermal resistance increases more sharply at the beginning. The total thermal resistance of the heat pipe ranges from 0.02 to 0.56 K/W.  相似文献   

10.
在微层蒸发模型的理论基础上,对热虹吸管内部设置分流管结构强化沸腾传热者机理分析。建立分流管强化热哐吸管内部沸腾传热模型,同时选择七种不同的分流管开孔结构,与光滑管进行了对比实验研究,寻得最佳分流管结构,并综合大量实验数据建立强化沸腾传热准数方程式。  相似文献   

11.
Nucleate boiling at high heat fluxes has been studied numerically by solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The interface is captured by using the level set method based on a sharp-interface representation. The evaporative heat flux from the liquid microlayer is incorporated in the analysis. The effects of wall superheat, number density of nucleation sites and waiting period on the bubble dynamics and heat transfer in nucleate boiling are investigated. The heat fluxes obtained from the present numerical simulations are compared with the experimental data reported in the literature.  相似文献   

12.
A new model is developed to describe the heat transfer mechanism in nucleate pool boiling on a microconfigured composite surface. Both the microlayer and macrolayer thickness are determined from the model. This model can be extended to explain the nucleate boiling on plain surfaces. The enhancement mechanisms of heat transfer for the nucleate boiling on the microconfigured surface are analyzed.  相似文献   

13.
The multidimensional heat transfer and fluid flow in the microlayer region below a vapor bubble formed during boiling in microgravity are investigated by numerically solving the Navier–Stokes equations with the energy equation. The flow is driven by Marangoni flow due to the surface tension gradient along the bubble surface that results from the temperature gradient. The model also includes condensation and evaporation at the bubble surface. The flow field and heat transfer are calculated for microlayer thicknesses from 0.01 mm to 10 mm to investigate the effect of microlayer thickness. The results show that the velocities are small and have only a small effect on the temperature distribution as compared to the solution for pure conduction in the liquid. Natural convection is shown to have a negligible effect on heat transfer. For less than ideal evaporative heat transfer at the bubble interface, Marangoni convection caused the heat transfer to increase several percent. The flow in the microlayer is shown to agree with the lubrication analogy only for thin, relatively flat interfaces. © 2000 Scripta Technica, Heat Trans Asian Res, 30(1): 1–10, 2001  相似文献   

14.
Studies of iron oxide deposition on Alloy-800 heat exchanger tubes have been part of a continuing research program at the University of New Brunswick (UNB); the present work formulates mechanisms for the effect of bubbles on deposition in water under boiling conditions. To supplement results from earlier deposition experiments in a fouling loop at UNB, measurements of bubble frequency and departure diameter as a function of heat flux were performed. High-speed movies of bubbling air/water systems indicated that a pumping action moved particles from adjacent areas at the surface to bubble nucleation sites. To explain the observations, the model considers deposition and concomitant removal. Deposition includes microlayer evaporation and filtration through the porous deposit. The deposit is sparse in the first stage, when the dominant process is microlayer evaporation including particle trapping and pumping, creating spots of deposit. Filtration becomes more important as the deposit thickens to a stage when microlayer evaporation becomes negligible. Chimney effects then control. Turbulence due to detaching and collapsing bubbles affects removal. In subcooled boiling, collapsing bubbles generate enough turbulence to maintain much of the deposit labile, while in bulk boiling bubble detachment from the nucleation site is dominant and a smaller portion of the deposit is labile and subject to removal. Model predictions are presented and shown to agree quite well with experimental data.  相似文献   

15.
Flow boiling through microchannels is characterized by nucleation and growth of vapor bubbles that fill the entire channel cross-sectional area. As the bubbles nucleate and grow inside the microchannel, a thin film of liquid or a microlayer gets trapped between the bubbles and the channel walls. The heat transfer mechanism present at the channel walls during flow boiling is studied numerically. It is then compared to the heat transfer mechanisms present during nucleate pool boiling and in a moving evaporating meniscus. Increasing contact angle improved wall heat transfer in case of nucleate boiling and moving evaporating meniscus but not in the case of flow boiling inside a microchannel. It is shown that the thermal and the flow fields present inside the microchannel around a bubble are fundamentally different as compared to nucleate pool boiling or in a moving evaporating meniscus. It is explained why thin-film evaporation is the dominant heat transfer mechanism and is responsible for creating an apparent nucleate boiling effect inside a microchannel.  相似文献   

16.
The droplet evaporation process after impinging on a solid wall near Leidenfrost point is theoretically analyzed. Considering the change of heat transfer effective in the evaporation process, it is divided into recoil stage and spherical stage, and the heat transfer models in these two stages are built, respectively. The effect of initial Weber number, initial droplet diameter, solid surface superheat and wettbility are included in the models. A correlation for predicting evaporation lifetime is obtained based on the theoretical analysis and experimental results. By comparing analysis results with experimental data, it is concluded that the evaporation process can be predicted by present model. The results imply that Leidenfrost point may be not the turning point of heat transfer mechanism. The effect of drop size and Weber number are also analyzed.  相似文献   

17.
An investigation on the effects of solid particles on boiling heat transfer enhancement is performed. The range of particle diameter is from millimeter to nanometer. The experimental results show that boiling heat transfer can be enhanced greatly by adding the solid particle into the liquid whether in fixed particle bed or in fluidized particle bed. The boiling enhancement is closely related to the particle size, the initial bed depth and the heat flux applied. The experiments show that boiling characteristics are greatly changed when a particle layer is put on the heated surface. The major effects of fixed particle bed on nucleate pool boiling heat transfer are the nucleation, bubble moving and thermal conductivity effect. A boiling heat transfer correlation is obtained to predict the boiling heat transfer coefficients in a liquid saturated porous bed. A volumetric convection mechanism of boiling heat transfer enhancement by fluidized particles is proposed. The calculated results from the model suggested in this paper agree reasonably with the experimental values.  相似文献   

18.
Liquid nitrogen, as a coolant, is generally applied in cell vitrification cryopreservation. It takes heat from the carrier with cell samples through its violent evaporation on the carrier surface. As a result, the temperature of the carrier plunges dramatically. This article focuses on the unsteady evaporation heat transfer characteristics of liquid nitrogen on a microstructured surface etched into the frozen carrier surface at a high superheat level. The heat flux and evaporation heat transfer coefficient of liquid nitrogen were investigated using a lumped capacitance method. The experimental results showed that the cooling rate of the thin film evaporation on the microstructured surface is obviously higher than that of pool boiling, which is currently being used for cell cryopreservation. The heat flux and the evaporation heat transfer coefficient work together to present a parabolic trend with the superheat decreasing during this heat transfer process. Besides, the microstructure of the surface has an important effect on the evaporation heat transfer of liquid nitrogen. The larger the thin film evaporation zone is, the higher the heat transfer coefficient is. The current investigation results in a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.  相似文献   

19.
In this work, a transient heat conduction model is developed for rewetting a hot wall surface by a falling liquid film. In the model, the heat conduction in the rewetted wall is assumed to be two‐dimensional. Convection heat transfer from the hot surface to rewetting fluid is considered negligible in the dry surface region ahead of the wet front. The numerical solution indicates that the rewetting process is mainly controlled by two‐dimensional heat conduction in the rewetted wall, even for the walls of low Biot number, especially at low initial temperatures. The effects of Biot number and initial wall temperature on the rewetting velocity are investigated. Comparison of the results with previous studies is presented.  相似文献   

20.
A. K. Das  P. K. Das  P. Saha 《传热工程》2013,34(5):374-382
Among the different mechanisms of heat transfer during nucleate pool boiling, evaporation from the micro layer, evaporation from the macro layer, and transient heat transfer from the fluid mass above the macro layer play very crucial roles. Based on these three mechanisms, a model made earlier by the authors can predict the pool boiling heat transfer of water from flat and tubular surfaces quite accurately. To the best of our knowledge no model has so far been constructed for refrigerants considering evaporation from micro and macro layers. This leaves an opportunity for extending the generic micro–macro layer-based boiling heat transfer model for refrigerants. In the present work the authors' earlier model has been used to predict boiling heat transfer for a number of refrigerants. Experimental data for both flat and tubular surfaces have been considered for the validation of the model. Good agreements have been observed in most of the cases. Although the model is developed for nucleate boiling, it has been extended for a higher degree of superheat, and a matching trend can be seen beyond the critical heat flux for various heat input rates. Values of critical heat flux are also well predicted by the present model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号