首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
晶粒细化能够同时提高钢铁材料的强度和韧性,但工业应用最广泛的TMCP技术对显微组织的细化存在极限,通常仅能将晶粒细化至5 μm.利用动态相变(DT)技术能够制备出晶粒尺寸小于2μm的超细晶钢,对于满足工业发展需求具有重要意义.介绍了动态相变理论的研究进展,主要综述了动态相变形核驱动力、形核方式以及流变应力等方面的研究,...  相似文献   

2.
The variant selection of martensites(ε-M and α'-M) and ε-M reversion in dynamic tensile high-manganese TRIP steel were investigated. α'-M variant pairs with a zigzag morphology frequently formed, and the pairs of neighboring α'-M variants were examined in terms of mechanical work and strain energy reduction. The occurrence of a primary α'-M variant is determined by mechanical work, but high products of mechanical work and strain energy reduction are essential for secondary variant selection. In contrast to α'-M variant pair selection, ε-M variant selection can be attributed to the highest mechanical work. During ε-M→α'-M transformation, the mechanical work of ε-M reversion is higher than that of α'-M variant, thereby implying that ε-M reversion in h110 icgrain is possible. e-M plate distribution also affects the feasibility of ε-M reversion.  相似文献   

3.
借助EBSD等技术研究了从冷轧到退火过程中IF钢中铁素体再结晶晶粒的取向演变。研究结果表明,从冷轧到退火过程中,铁素体晶粒取向向着平行于法向的[111]晶粒演变,而平行于法向的[100]晶粒逐渐消失;在冷轧变形过程中,铁素体晶粒的晶体取向决定着发生滑移变形的难易程度,与[100]晶粒相比,[111]晶粒更易于发生滑移变形,并在晶粒内部积累大量的位错,储存了大量的应变能,在随后的退火过程中,应变能较高的[111]晶粒优先形核并长大,优先发生再结晶,而应变能较低的[100]晶粒的再结晶受到阻碍。随着退火温度的升高,γ织构([111]//ND)明显增强,其织构组分(111)[112]尤为明显。  相似文献   

4.
The precipitation characteristics and mechanism of vanadium carbides during isothermal transformation at 650 ℃ in a V-microalloyed medium-carbon steel were investigated through scanning electron microscopy and transmission electron microscopy as well as dilatometry test. Five morphologies of vanadium carbides were found to precipitate at different nucleation sites during the transformation. Two kinds of interphase precipitation form simultaneously in both pro-eutectoid and pearlitic ferrites. The linear arrays of fine interphase precipitates are parallel to the c/a interface, and the fine needles of interphase precipitates are perpendicular to the c/a interface. The vanadium carbides of long or short fibers, coarse particles and fine particles form in both pro-eutectoid and pearlitic ferrites, displaying different precipitation distributions and orientation relationships with ferrite. The precipitation mechanisms of vanadium carbide precipitates with different modes were proposed, and the precipitation sequence of various vanadium carbide precipitates was finally ascertained.  相似文献   

5.
The effect of heat treatment on the microstructures and mechanical properties of a newly developed austenitic heat resistant steel(named as T8 alloy) for ultra-supercritical applications have been studied. Results show that the main phases in the alloy after solution treatment are γ and primary MX. Subsequent aging treatment causes the precipitation of M_(23)C_6 carbides along the grain boundaries and a small number of nanoscale MX inside the grains. In addition, with increasing the aging temperature and time, the morphology of M_(23)C_6 carbides changes from semi-continuous chain to continuous network.Compared with a commercial HR3C alloy, T8 alloy has comparable tensile strength, but higher stress rupture strength. The dominant cracking mechanism of the alloy during tensile test at room temperature is transgranular, while at high temperature, intergranular cracking becomes the main cracking mode, which may be caused by the precipitation of continuous M_(23)C_6 carbides along the grain boundaries. Typical intergranular cracking is the dominant cracking mode of the alloy at all stress rupture tests.  相似文献   

6.
根据Gleeble-3500热模拟试验机测量30CrNi3MoV钢的真应力-真应变曲线,系统研究了应变速率为0.01、0.1 s-1时钢材的动态再结晶行为,并构建了其动态再结晶模型。结果表明:30CrNi3MoV钢在高温小应变速率下更容易发生动态再结晶,其热变形激活能为328.2 kJ/mol;通过加工硬化率随流变应力变化曲线(θ-σ)的拐点确定临界应变,可得动态再结晶临界应变方程为εc=0.001 22Z0.175;构建的动态再结晶体积分数及其平均晶粒尺寸模型能够较好地预测试验钢的动态再结晶体积分数及其晶粒尺寸;当应变速率为0.1 s-1、变形温度为1050 ℃时,试验钢的晶粒最细小、均匀,平均晶粒尺寸约为19.9 μm。  相似文献   

7.
采用光学显微镜和扫描电镜对比研究了铁素体区热轧工艺及奥氏体区热轧工艺对普通用冷轧钢板(SPCC)产品热轧组织、冷轧组织及性能的影响。结果表明,与奥氏体区轧制工艺相比,采用铁素体区热轧工艺生产的SPCC热轧板晶粒尺寸会增大约17 μm,{111}面织构数量减少了8.74%,强度略微降低,而{001}<110>织构数量增加了12.40%,强度提高了19.81。此外,采用铁素体区热轧工艺生产的SPCC成品晶粒呈近似等轴状,与奥氏体区热轧工艺相比平均晶粒尺寸增大了4.5 μm。SPCC铁素体区轧制热轧板中更大的晶粒尺寸、更少的{111}面织构及更强的{001}<110>取向织构导致了冷轧成品更低的屈服强度和塑性应变比r值,较奥氏体区热轧工艺而言平均屈服强度降低了19 MPa,平均r值下降了1.1。  相似文献   

8.
利用SEM、霍普金森杆和拉伸试验机等仪器对3种1000 MPa级高破碎性钢的组织、静态和动态力学性能进行了研究,并拟合了Johnson-Cook动态本构模型。结果表明:3种试验钢均有明显的应变硬化特征,应变速率由0.001 s-1提高至8000 s-1时,1号钢的屈服强度增加546 MPa;2号钢的屈服强度增加434 MPa;3号钢的屈服强度增加667 MPa。3种试验钢也存在明显的温度效应,1号 钢微观组织中未溶碳化物的存在使晶格阻力增大,有效的阻碍了位错运动,500 ℃高温条件下,1号钢的屈服强度为450 MPa,明显高于2号钢和3号钢的屈服强度330 MPa和310 MPa。3种高破碎性试验钢的 Johnson-Cook 方程分别为:σe=(1008+1309.04(εp)0.679 97)(1+0.1498lnε·*)(1-T*1.188 53);σe=(1000+1214.321(εp)0.6112)(1+0.480 15lnε·*)(1-T*1.263 05);σe=(1008+1334.871(εp)0.610 88)(1+0.116 18lnε·*)(1-T*0.992 47)。  相似文献   

9.
Phase transformation from austenite to ferrite is an important process to control the microstructures of steels. To obtain finer ferrite grains for enhancing its mechanical property, various thermomechanical processes followed by static ferrite transformation have been carried out for austenite phase. This article reviews the dynamic transformation (DT), in which ferrite transforms during deformation of austenite, in a 6Ni-0.1C steel recently studied by the authors. Softening of flow stress was caused by DT, and it was interpreted through a true stress–true strain curve analysis. This analysis predicted the formation of ferrite grains even above the Ae3 temperature (ortho-equilibrium transformation temperature between austenite and ferrite), where austenite is stable thermodynamically, under some deformation conditions, and the occurrence of DT above Ae3 was experimentally confirmed. Moreover, the change in ferrite grain size in DT was determined by deformation condition, i.e., deformation temperature and strain rate at a certain strain, and ultrafine ferrite grains with a mean grain size of 1 μm were obtained through DT with subsequent dynamic recrystallization of ferrite.  相似文献   

10.
In order to explain steady-state plastic deformation, i.e. the absence of strain hardening in ultrafine grained low carbon steel during tensile deformation, steel of different ferrite grain sizes was prepared by intense plastic straining followed by static annealing and then tensile-tested at room temperature. A comparison between the ferrite grain size of ultrafine grained steel and the dislocation cell size of coarse grained steel formed during tensile deformation revealed that uniform dislocation distribution with high density and cell formation were unlikely to occur in this ultrafine grained steel. This is ascribed to the fact that the ultrafine grain size is comparable to or smaller than the cell size at the corresponding stress level. In addition, from a consideration of dynamic recovery, it was found that the characteristic time for trapped lattice dislocations to spread into the grain boundaries was so fast that the accumulation of lattice dislocation causing strain hardening could not occur under this ultrafine grain size condition. Therefore, the extremely low strain hardening rate of ultrafine grained low carbon steel during tensile deformation is attributed to the combined effects of the two main factors described above.  相似文献   

11.
Nb-V-Ti微合金钢中奥氏体两相区变形过程组织演变   总被引:1,自引:0,他引:1  
利用循环加热-淬火工艺制备超细晶奥氏体的基础上,将超细晶奥氏体快冷至两相区实施不同应变速率下的单道次变形,分析其在两相区的动态组织演变特征。结果表明:奥氏体晶粒尺寸为1~3μm的Nb-V-Ti微合金,在两相区不同应变速率变形下可获得尺寸小于500 nm铁素体晶粒,且变形过程中铁素体由初始的不均匀条带状分布逐渐演变为均匀弥散化分布。  相似文献   

12.
杨德庄 《金属学报》1986,22(5):89-154
<正> 低碳铁素体加马氏体双相钢的强度和塑性取决于马氏体的数量和分布,这与亚温区加热过程中奥氏体形成的特点有关。由于奥氏体的形成是在高温下进行,速度快,难于直接获得有关形核的信息。本文研究低碳钢中奥氏体形成的部位,以及预先冷轧的影响。 试验用低碳1.5Mn钢,其化学成分为(wt-%):C 0.08,Mn 1.45,si 0.21,Al 0.045,N 0.005。经高频感应电炉熔炼成45kg的钢锭后,热轧成2.5mm厚的板材。在真空炉中经过1200℃均匀化退火24h。然后,在盐炉中900℃加热15min后空冷,获得铁素体加珠光体型的正火原始组织。另将一部分正火的坯料进行厚度压下量  相似文献   

13.
The effects of substituting Co for Fe on the microstructure and stress rupture properties of K4750 alloy were studied.The microstructure of the alloy without Co(K4750 alloy) and the alloy containing Co(K4750-Co alloy) were analyzed.Substitution of Co for Fe inhibited the decomposition of MC carbide and the precipitation of η phase during long-term aging treatment.In K4750-Co alloy,the morphology of MC carbide at the grain boundary(GB) remained dispersed blocky shape and no η phase was observed after aging at 750℃for 3000 h.However,in K4750 alloy,almost all the MC carbides at GBs broke down into granular M_(23)C_6 carbide and needle-like η phase.The addition of cobalt could delay the decomposition of MC carbides,which accordingly restricted the elemental supply for the formation of η phase.The stress rupture tests were conducted on two alloys at 750℃/430 MPa.When Co is substituted for Fe in K4750 alloy,the stress rupture life increased from 164.10 to 264.67 h after standard heat treatment.This was mainly attributed to increased concentration of Al,Ti and Nb in γ' phase in K4750-Co alloy,which further enhanced the strengthening effect of γ' phase.After aging at 750℃for 3000 h,substitution of Co for Fe can also cause the stress rupture life at 750℃/430 MPa to increase from 48.72 to 208.18 h.The reason was mainly because MC carbide degradation and η phase precipitation in K4750 alloy,which promoted the initiation and propagation of micro-crack during stress rupture testing.  相似文献   

14.
张寒  白秉哲 《金属学报》2010,46(1):47-51
将Mn-Si-Cr系中碳钢在过冷奥氏体状态下进行低速率变形, 变形促进先共析铁素体转变, 但未见层状珠光体形成. 铁素体在奥氏体晶界和晶内形核, 以近似等轴状长大、交联, 并分割奥氏体, 形成富碳奥氏体区. 随着变形量的增大, 铁素体可在富碳奥氏体区内部继续形核长大并交联, 导致富碳奥氏体区不断被分割且碳浓度升高, 当碳浓度足够高时, 一次析出球状碳化物可在富碳奥氏体区边界处形成, 尺寸为0.5-1 μm; 变形过程中铁素体的动态回复和再结晶导致碳原子从Cottrell气团中逸出, 在铁素体内部形成几十纳米的二次析出球状碳化物.  相似文献   

15.
借助透射电镜观察和分子动力学计算,对3D打印Ti-6Al-4V合金的变形行为及其温度相关性进行了系统研究。结果表明,温度在TiAl纳米多晶体变形机制的竞争中起关键作用。当温度低于800 K,平均晶粒尺寸低于8.3 nm的单相TiAl纳米多晶合金首先出现位错运动,且层错保留在晶粒中并形成交错结构。同时,大尺寸晶粒(≥8.3 nm)为位错运动提供了足够的空间,很少在晶粒中形成层错。在双相TiAl+Ti3Al纳米多晶合金中,层错的交割是低应变(ε<18.0%)TiAl晶粒的主要变形机制,并且Ti3Al晶粒保持其初始结构。当ε≥18.0%时,Ti3Al晶粒中的位错开始运动并形成层错交割。当温度高于800 K时,Ti和Al原子处于高能状态,主要的变形机制与具有非晶结构的滑移边界有关。非晶滑移边界及再结晶结构是双相TiAl+Ti3Al纳米多晶合金组织变形的最重要特征。  相似文献   

16.
The formation of fine ferrite grains by the asymmetric rolling of low carbon steel and their mechanical properties were studied. Super-cooled low carbon austenite was deformed by asymmetric rolling at 750 °C with a roll size ratio of 1.5 and immediately cooled at various cooling rates ranging from 3 °C/s to 15 °C/s. Fine ferrite grains (∼2 μm) were formed after asymmetric rolling, preferentially at the prior austenite grain boundaries. The volume fraction of the fine ferrite grains increased with increasing rolling reduction. A ferrite plus pearlite microstructure was obtained at smaller strains and slower cooling rates. However, after heavy deformation, a fine ferrite grain structure with carbide particles dispersed at the ferrite grain boundaries was obtained and the pearlite structure was not observed even after very slow cooling, which implies that most of the ferrite grains were formed dynamically, i.e. during deformation. The yield strength of the asymmetrically rolled steel plates increased with increasing deformation; however, the yield ratio also increased with increasing rolling reduction. The best combination of strength and yield ratio was obtained by using a low level of deformation and a high cooling rate, in which case a portion of the untransformed austenite transformed to martensite.  相似文献   

17.
In this study, typical microstructural characteristics of a metastable β Ti alloy (Ti-5Al-5Mo-5V-3Cr-1Fe) forged in a dual-phase region (strain of 54% at 820 °C) were investigated in detail by the combined use of X-ray diffraction, energy dispersive spectroscopy, electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that the microstructure of the forged alloy is composed of bulk α grains, α plates and β matrix. The bulk α grains correspond to retained primary α phase (αp, average grain size~2.4 μm), while the α plates are secondary α phase (αs, width~70 nm) precipitated from the β matrix during air cooling. During forging, the β matrix experiences dynamic recovery with many subgrains and significant orientation gradients formed. Analyses of the orientation relationship between the α and β phases show that the Burgers orientation relationship is not maintained between some αp and β phases, which should be related to thermal deformation-induced changes of their orientations. In contrast, all of the αs plates are found to maintain well the Burgers orientation relationship with the β phase.  相似文献   

18.
通过对耐沟状腐蚀现象的研究,结合生产设备能力,设计了6种成分钢带和6种退火工艺。借助光学显微镜、扫描电镜、拉伸试验、中性盐雾试验等手段,研究了采暖系统用耐沟状腐蚀钢带生产过程中冷轧退火工艺对其性能的影响。结果发现:低于Ac1温度(650、700 ℃)的退火不可能改变原来冷轧铁素体晶界的遗传结构,冷轧α相的再结晶长大不充分,碳化物的聚合和长大过程也不充分;当退火温度达到Ac1左右(750 ℃),由于碳元素的固溶加剧,导致α相再结晶和析出物的聚合长大,得到极优的延展性,对深冲非常有利;退火温度位于Ac1~Ac3之间(850 ℃),发生α→γ相再结晶,可以取得最好的软化效果。对于含Ti的试验钢,随着退火温度的降低,其塑性应变比r值呈下降趋势。Cr的加入不利于耐沟状腐蚀性能,但是Al的加入有利于耐沟状腐蚀性能。采用两段式退火工艺进行工业化生产,可以得到外观和性能优良的采暖系统用耐沟状腐蚀产品。  相似文献   

19.
《Acta Materialia》2002,50(16):4177-4189
Simple cold-rolling and annealing of martensite starting structure can produce ultrafine grained structure in carbon steel. The microstructural evolution during the process was studied in a 0.13%C steel. The ultrafine lamellar dislocation cells (LDCs) with mean thickness of 60 nm were mainly observed in a 50% cold-rolled specimen as well as the irregularly bent lamellas (IBLs) and the kinked laths (KLs). The LDCs and the IBLs had large local misorientations. The specimens annealed at temperatures from 723 to 773 K showed the multiphased ultrafine structure composed of equiaxed ultrafine ferrite grains with the mean grain size of 180 nm, nano-carbides distributed uniformly and small blocks of tempered martensite. The formation of the ultrafine grained structure was discussed from the viewpoint of characteristics of the martensite starting structure. It was concluded that the fine grained structure of martensite play an important role for ultrafine grain subdivision during plastic deformation.  相似文献   

20.
《Acta Materialia》2001,49(7):1285-1292
The grain refinement mechanism during equal-channel angular pressing of a plain low-carbon steel was explored by a careful analysis of the slip systems operating at each pass of repetitive pressing. The steel was subjected to one to eight passes of pressing, in which a single passage yielded an effective strain of ∼1, at 623 K. At the initial stage of pressing, submicrometer-order ferrite grains enclosed by serrated and low-angled boundaries were formed. Transmission electron microscopy examination revealed that these boundaries resulted from interaction between the slip systems that are typical in body-centered cubic structures. Further pressings mainly resulted in rotation of ultrafine subgrains rather than grain refinement, providing the formation of high-angle grain boundaries. Since the serrated boundaries restrict dislocation movement, the rotation of subgrains with the serrated boundaries is more favorable for accommodating further deformation than intragranular strain, and therefore boundaries become high-angled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号