首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biomass & bioenergy》2005,28(1):63-68
In H2 production from woody biomass by steam gasification using CaO as a CO2 sorbent, the effect of reaction parameters such as the molar ratio of CaO to carbon in the woody biomass ([Ca]/[C]), reaction pressure, and reaction temperature was investigated on H2 yield and conversion to gas. In the absence of CaO, the product gas contained CO2. On the other hand, in the presence of CaO ([Ca]/[C]=1,2, and 4), no CO2 was detected in the product gas. At a [Ca]/[C] of 2, the maximum yield of H2 was obtained. The H2 yield and conversion to gas were largely dependent on the reaction pressure, and exhibited the maximum value at 0.6MPa. It is noteworthy that H2 was obtained from woody biomass at a much lower pressure compared to other carbonaceous materials such as coal (>12MPa) and heavy oil (>4.2MPa) in steam gasification using a CO2 sorbent. H2 yield increased with increasing reaction temperature. Woody biomass is the one of the most appropriate carbonaceous materials in H2 production by steam gasification using CaO as a CO2 sorbent, taking the reaction pressure into account.  相似文献   

2.
Natural convection of nanofluids in presence of hot and cold side walls (case 1) or uniform or non-uniform heating of bottom wall with cold side walls (case 2) have been investigated based on visualization of heat flow via heatfunctions or heatlines. Galerkin finite element method has been employed to solve momentum and energy balance as well as post processing streamfunctions and heatfunctions. Various nanofluids are considered as Copper–Water, TiO2–Water and Alumina–Water. Enhancement of heat transfer with respect to base fluid (water) has been observed for all ranges of Rayleigh number (Ra). Dominance of viscous force or buoyancy force are found to play significant roles to characterize the heat transfer rates and temperature patterns which are also established based on heatlines. In general, convective closed loop heatlines are present even at low Rayleigh number (Ra=103) within base fluid, but all nanofluids exhibit dominant conductive heat transport as the flow is also found to be weak due to dominance of viscous force for case 1. On the other hand, convective heat transport at the core of a circulation cell, typically represented by closed loop heatlines, is more intense for nanofluids compared to base fluid (water) for case 2 at Ra = 105. It is also found that heatlines with larger heatfunctions values for nanofluids coincide with heatlines with smaller heatfunction values for water at walls. Consequently, Nusselt number which is also correlated with heatfunctions show larger values of nanofluids for all ranges of Ra. Average Nusselt numbers show that larger enhancement of heat transfer rates for all nanofluids at Ra=105 and Alumina–Water and Copper–Water exhibit larger enhancement of heat transfer rates.  相似文献   

3.
4.
5.
6.
7.
8.
A composite correlation of the average Nusselt number and the channel Rayleigh number for buoyant air flow through inclined channels with uniform heat flux boundaries is presented. The form of the correlation is based on dimensional analysis and is a superposition of the developing and fully developed flow limits. In the limit of fully developed flow, an analytical solution for the Nusselt number is derived. The developing flow limit follows the format of the correlation for a single plate. The composite relationship based on the top wall temperature is Nu¯=6.25(1+r)Rasin?+1.64(Rasin?)2/5-1/2, where r is ratio of the heat flux at the top and bottom wall. At inclination angles of 30°?90°, this correlation predicts the available data base for 10Ra105 and agrees with the analytical solution for 1Ra102.  相似文献   

9.
In this paper an improved quadrature scheme based on the reverse Monte Carlo method implemented using Sobol sequences to generate ray orientations is presented. This has the property that a more uniform pattern of rays on the unit hemisphere is produced compared to the usual implementation of the reverse Monte Carlo method. The use of Sobol sequences gives a ray convergence rate for the incident heat flux that is asymptotically equivalent to O(NRay?1). The generation of ray directions using Sobol sequences means that the Central Limit Theorem no longer holds. In its place a Gaussian variable is formulated from the incident intensity distributions calculated using Sobol sequences. This makes it possible to calculate confidence limits for a prediction of incident heat flux and the confidence limits contract with ray number at a rate of O(NRay?1ln(NRay)). An extension to the Monte Carlo method combined with Sobol sequences is also presented that exploits the shape of the incident intensity distribution to a receiver. The new methodology is relatively simple to implement and shows some promising improvements in computational efficiency.  相似文献   

10.
11.
The problem of the thermal equation of state of the products of solid explosives is considered. It is assumed that the products are in chemical equilibrium, that the specific chemical heat released is independent of the loading density, and that the detonation density is proportional to the loading density. Using the energy conservation equation and thermodynamic relationships, it is then shown that the thermal equation of state must satisfy the following relationship:
F[T(1?K)/2Kυ;υ(1+K)/(1?K)p]=0
. where K is a constant and F is an arbitrary function of its two arguments. It is then argued that the experimental knowledge of detonation velocity, pressure, density, and particle velocity versus loading density is not enough to check the validity of an assumed thermal equation of state of the products and to compute the detonation temperature. In particular, it is explained why similar detonation pressures, densities, and particle velocities, but completely different detonation temperatures have been calculated by various authors, using similar detonation velocity data but different thermal equations of state.  相似文献   

12.
13.
14.
Hygroscopic charged fiber webs include a large number of interconnected capillaries formed by randomly distributed pores. The simultaneous heat and mass transfer in hygroscopic charged fiber webs is different from traditional flows in macro-channels resulted from the electrokinetic phenomena in micro-channels. In this paper, a mathematical model is presented with consideration of a quintic polynomial pore size distribution evaluated from a series of experiments and the electrokinetic phenomena resulting in a higher flow friction. The liquid diffusion coefficient in this model can be expressed as Dl(εl)=σcosφsin2β(rmax-rmin)nεln-14μ(1+A·Θ)?n-1Γ1Δ4-Ω1Γ2Δ4-Ω2Δ2. With specification of initial and boundary conditions, the governing equations are solved numerically and distributions of the temperature, the moisture concentration, and liquid water content in hygroscopic fiber webs are obtained. The comparison with the experimental measurements shows the rationality of this model in simulating the coupled heat and mass transfer in hygroscopic charged fiber webs with consideration of the electrokinetic phenomena.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号