首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的为了提高涂层硬质合金刀具的切削性能,研究了物理气相沉积PVD法制备的涂层硬质合金铣刀在高速干式环境下的铣削性能。方法采用阴极电弧技术制备了TiN、TiAlN以及TiAlSiN涂层硬质合金铣刀刀头,通过一同沉积涂层的硬质合金圆片,间接测量得出涂层的显微硬度、厚度和平均摩擦系数,并以CoCrMo合金为切削对象,进行了PVD涂层与无涂层刀具高速铣削下的对比试验。结果TiAlSiN显微硬度最高达3800HV,摩擦系数达0.3,TiAlN涂层平均膜厚为2μm,间接测得TiN、TiAlN以及TiAlSiN涂层的结合力依次为60、58、42N。在三者的切削性能中,TiAlSiN涂层的切削性能比TiAlN和TiN涂层的好,同等切削参数时,TiN刀具的高速铣削时间最短,TiAlSiN涂层的平均磨损值为0.1895,TiN的平均磨损值为0.3047。结论涂层中添加Al、Si,极大地提高了刀具的使用性能,改善了刀具切削过程中的耐磨性、红硬性,极大地延长了刀具的使用寿命。TiAlSiN涂层的硬度高,耐磨损性好,切削性能好,适合高速铣削加工。  相似文献   

2.
TiAlN,TiAlSiN涂层的制备及其切削性能   总被引:1,自引:3,他引:1  
陈强  张而耕  张锁怀 《表面技术》2017,46(1):118-124
目的研究TiAlN及TiAlSiN涂层的微观结构及力学性能,以及硬质合金涂层刀具切削SUS304不锈钢的切削性能及磨损行为。方法采用阴极电弧离子镀技术在硬质合金试片及铣刀上分别制备纳微米TiAlN及TiAlSiN涂层。通过X射线荧光测量系统测量涂层的厚度,用扫描电镜(SEM)观察涂层表面形貌,用能谱仪(EDAX)分析涂层元素成分,用X射线衍射(XRD)分析涂层晶相结构,用纳米压痕仪表征涂层硬度,用洛氏硬度计定性测量涂层结合力,通过高速铣削试验探究涂层刀具的切削性能及磨损行为。结果 TiAlN及TiAlSiN涂层的厚度分别为3.32μm和3.35μm,表面致密、光滑,高分辨率(20 000×)下观察到涂层表面有液滴、针孔及凹坑存在。Si元素促进了Ti N(200)晶相的生长,晶粒尺寸减小,硬度增加。TiAlN及TiAlSiN涂层的显微硬度分别为29.6 GPa及37.7 GPa,结合力分别满足VDI-3198工业标准的HF3和HF1等级。在130 m/min的高速切削条件下,TiAlSiN涂层刀具寿命约为未涂层刀具的5倍,TiAlN涂层刀具的1.5倍。结论 Si掺杂制备的TiAlSiN涂层具有高的硬度及良好的抗粘附性,更适用于不锈钢材料的高速切削加工。  相似文献   

3.
针对含Si超硬涂层与基体结合强度不足,切削过程中涂层易发生剥落从而导致涂层刀具切削性能低的问题,采用离子源增强的多弧离子镀技术在硬质合金刀具上制备了不同含Si层梯度结构的TiAlSiN梯度涂层。利用XRD、SEM、OM以及切削试验探讨不同含Si层梯度结构对涂层物相、表面形貌、膜基结合强度、摩擦磨损以及切削性能的影响。结果显示:不同含Si层梯度结构的TiAlSiN涂层主要由固溶的(Ti,Al) N和(Al,Ti) N相组成。其中,低Si直接过渡的TiAlSiN涂层(S3)呈现出较高的硬度、良好的膜基结合力、较低的涂层残余应力和摩擦因数。铣削结果显示,涂层刀具的切削磨损机理主要表现为粘着磨损。当切削速度为80 m/min时,低Si过渡涂层(S3涂层)表现出更高的切削长度(925 m),显著高于S1涂层的525 m;当切削速度由80 m/min增加至110 m/min时,S3涂层切削长度增加到1650 m。对含Si刀具涂层进行梯度设计,可有效提高涂层的膜-基结合强度和涂层刀具的切削性能。  相似文献   

4.
目的 比较两种沉积方法制备的AlTiN涂层的切削性能.方法 利用高功率脉冲磁控溅射技术(HiPIMS)和电弧离子镀技术(AIP),在硬质合金车刀片上沉积AlTiN涂层,比较和研究两种AlTiN涂层的组织形貌特性及综合性能.利用扫描电子显微镜和X射线能量色散谱仪,观察和检测涂层的生长形貌和元素含量.采用激光共聚焦扫描显微...  相似文献   

5.
目的研究断续切削过程温度变化对刀具粘结现象、涂层剥落和刀具磨损的影响。方法搭建了仿铣削加工的断续车削实验平台,采用热电偶法测量了断续切削过程中刀具后刀面在不同速度下的切削温度,利用带有能谱仪(EDS)的扫描电镜(SEM)观察后刀面随速度变化的磨损形貌并分析后刀面磨损区域的元素组成,阐述了后刀面温度和刀具磨损之间的联系,研究了Ti AlN涂层硬质合金刀具断续切削铍铜合金C17200时的后刀面磨损机理。结果随着切削速度的增加,刀具温度在v=500 m/min出现峰值,温度越高,后刀面的涂层剥落和粘结磨损现象越严重,涂层剥落和粘结磨损现象在切削速度为500 m/min时最严重,而后随着刀具温度的降低而减缓,切削速度600 m/min时的涂层剥落和粘结磨损现象相比500 m/min时有所减轻。结论断续切削过程中,刀具持续性地经受"负载-卸载"、"升温-降温"产生的高温、冲击和加工环境的不稳定性,是引起粘结现象、涂层剥落和刀具磨损的主要原因。涂层剥落和粘结磨损是导致铍铜合金断续切削刀具失效的主要磨损形式。  相似文献   

6.
High-speed milling of titanium alloys using binderless CBN tools   总被引:4,自引:0,他引:4  
The performance of conventional tools is poor when used to machine titanium alloys. In this paper, a new tool material, which is binderless cubic boron nitride (BCBN), is used for high-speed milling of a widely used titanium alloy Ti–6Al–4V. The performance and the wear mechanism of the BCBN tool have been investigated when slot milling the titanium alloy in terms of cutting forces, tool life and wear mechanism. This type of tool manifests longer tool life at high cutting speeds. Observations based on the SEM and EDX suggest that adhesion of workpiece and attrition are the main wear mechanisms of the BCBN tool when used in high-speed milling of Ti–6Al–4V.  相似文献   

7.
张而耕  黄彪  何澄  周琼 《表面技术》2017,46(6):125-130
目的研究Ta-C涂层刀具与普通类金刚石涂层刀具切削2A50铝合金时的性能对比。方法通过实验比较两刃、四刃Ta-C涂层铣刀和两刃、四刃普通类金刚石涂层铣刀,在干式切削条件下切削2A50铝合金的性能。通过相同切削条件下刀具切削距离的长短,比较刀具的使用寿命,并在显微镜下观察切屑的表面形貌,用表面粗糙度仪检测铝合金表面的粗糙度。结果两刃Ta-C涂层铣刀干式切削铝合金时的使用寿命最长,切削距离为116 m。Ta-C涂层铣刀与普通类金刚石涂层铣刀加工工件的表面粗糙度总体呈上升趋势,两刃Ta-C涂层铣刀加工出来的工件表面质量较好,工件表面粗糙度均值为0.692μm。结论相同刀刃数量且结合力良好的涂层铣刀相比较,Ta-C涂层铣刀较普通类金刚石涂层铣刀加工出来的工件表面粗糙度平均值低,同种涂层加工得到的切屑表面微观形貌无明显差别。Ta-C涂层铣刀与普通类金刚石涂层铣刀切削铝合金时,抑制粘刀效果都十分明显,但Ta-C涂层铣刀效果更优。  相似文献   

8.
This paper describes the results of application of different coolant strategies to high-speed milling of aluminum alloy A356 for automotive industry. The paper investigates the effect of flood coolant, dry cutting, and minimum quantity of lubricant (MQL) technologies on tool wear, surface roughness and cutting forces. The cutting speed range was up to 5225 m/min. The feed rate used was up to 20 m/min. The result of MQL application is compared with dry milling and milling with flood coolant application. It was found that the MQL technology could be a viable alternative to the flood coolant application. The adhesive tool wear mechanism and adhesion activated surface quality deterioration are revealed and the role of lubricant in their reduction is defined.  相似文献   

9.
Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel   总被引:1,自引:0,他引:1  
The austenitic stainless steels in general are considered to be difficult to machine materials. This is mainly due to the high plasticity and tendency to work-harden of the austenitic stainless steel, which usually results in severe cutting conditions. Additionally, austenitic stainless steels have much lower thermal conductivity as compared to structural carbon steels; this inflicts high thermal impact within the chip-tool contact zone, which significantly increase the cutting tool wear rate. The machineability of austenitic stainless steels can be improved due to application of coated cutting tools. Hard PVD coating with low thermal conductivity and improved surface finish should be used in this case. This can result in enhancement of frictional characteristics at the tool/workpiece interface as well as chip evacuation process. In this study the stainless steel plates were machined using cemented carbide finishing end mills with four high aluminum containing PVD coatings namely: AlCrN, AlCrNbN, fine grained (fg) AlTiN and nano-crystalline (nc) AlTiN. Both AlTiN and AlCrN-based coatings have high oxidation resistances due to formation of aluminum oxide surface layers. The influence of surface post-deposition treatment on tool wear intensity was investigated. The coating surface texture before and after post-deposition treatment was analyzed by means of the Abbot-Firestone ratio curves. Minimal wear intensity after length of cut 150 m was achieved for cutting tools with the nc-AlTiN coating.  相似文献   

10.
Machining of Ni-based aerospace alloys is one of the major challenges of modern manufacturing. Application of cemented carbide tooling with nano-multilayered AlTiN/Cu PVD coating results in a significant tool life improvement under conditions of turning the hard-to-machine aerospace Ni-based Inconel 718 superalloy. Studies of the structure, properties, tribological and wear performance of the nano-multilayered AlTiN/Cu PVD coating have been performed. The structure of the coating has been investigated using High Resolution Transmission Electron Microscopy. Various properties of the coating including microhardness, thermal conductivity and coefficient of friction vs. temperature were measured.Investigations of the coated tool life, wear behavior and chip formation for cutting tools with nano-multilayered AlTiN/Cu PVD coating were performed. Morphology of the worn tools has been studied using SEM/EDX. AlTiN/Cu coatings present multi-functionality because they combine self-lubricating behavior with reduced thermal conductivity. This beneficial combination of properties results in significant improvement of the coated tool life.  相似文献   

11.
Ti6Al4V是典型的难加工材料,切削效率低、刀具磨损严重严重,因此提高Ti6Al4V的加工效率和刀具寿命是急需解决的问题。作者对硬质合金刀具加工Ti6Al4V的切削力和磨损特性进行了实验研究。对三种不同刀具在干切削状态下车削Ti6Al4V切削力进行了试验,分析了切削力与切削速度、切削路程的关系,同时讨论了主偏角对TC4车削稳定性的影响。最后,对刀具的的磨损形态和磨损机理进行了研究。粘结、扩散、氧化是硬质合金刀具的主要磨损机理。  相似文献   

12.
The temperature generated by friction and plastic deformation in the secondary shear zone strongly controls tool wear. At lower cutting speeds tool wear is not severe insofar as the temperature is not significant. When the cutting speed is increased, there is a transition in wear mechanisms from abrasion and/or adhesion to diffusion. In the present paper, the change in wear mechanisms as a function of cutting speed and coating material is discussed. The cutting tests were performed on a rigid instrumented drilling bench without the use of cutting fluids. AA2024 aluminium alloy was used to investigate the wear mechanisms of cemented tungsten carbide and HSS tools. Three cutting speeds (25, 65 and 165 m/min) and a constant feed rate of 0.04 mm/rev were selected for the experiments. The best results in terms of maximum and minimum hole diameter deviations and surface roughness are obtained for the uncoated and coated tungsten carbide drills. The results also show that HSS tool is not suitable for dry machining of AA2024 aluminium alloy.  相似文献   

13.
In this study, cemented carbide ball nose end mills with nano-crystalline Al0.67Ti0.33N hard PVD coatings deposited by cathodic arc evaporation were annealed at 700 °C during 2 h in a controlled atmosphere environment (argon + oxygen mixture) and in vacuum. The changes of structure and properties of the treated coating surfaces have been analyzed using both cross-sectional scanning electron microscopy (SEM) and x-ray absorption spectroscopy (XAS) of the N-K and O-K edges. Cutting tools have been run through ball nose end milling of hardened H13 steel (HRC 50) where temperature or stress dominating phenomena control tool life. The data obtained indicate that an AlTiN coated cutting tool can be modified upon annealing at low temperature conditions and should be considered as a composite surface engineered material. It is shown that increased tool life could be achieved if annealing of AlTiN is performed in an oxygen-containing atmosphere. A variety of different characteristics should be optimized to achieve better wear resistance of the cutting tools with annealed Al0.67Ti0.33N coating under high temperature and stress cutting conditions.  相似文献   

14.
目的提高AlTiSiN涂层与刀具基材的结合强度,降低涂层表面的粗糙度,减少切削过程中涂层的剥落,改善涂层刀具的切削寿命。方法采用离子源增强的多弧离子镀设备刻蚀清理基体材料,并制备AlTiSiN涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、粗糙度仪、划痕仪和铣削实验探讨涂层沉积前不同Ar离子刻蚀清洗工艺对AlTiSiN涂层结构、膜基结合力和涂层表面形貌的的影响,探究不同刻蚀清洗工艺对涂层刀具切削机理和切削性能的影响。结果 AlTiSiN涂层的相结构主要由(Al,Ti)N固溶体相组成,涂层沿着基体呈现柱状生长。随着高能Ar离子刻蚀电流由40 A增加至100 A,涂层的表面粗糙度降低,Ra值由140 nm降至69 nm,Sq值由226 nm降至117 nm;涂层与基体之间的结合强度增加,Lc2由41 N增加至52 N;切削加工DC53模具钢结果显示,当清洗电流增加至100 A,涂层的剥落几率降低,涂层刀具的切削寿命增加,由11 m增加至23 m。结论高能离子刻蚀前处理过程可有效增加涂层与基体之间的结合强度,降低涂层表面粗糙度,进而提高涂层刀具的切削寿命。刻蚀清洗所用电流强度越大,清洗效果越好,刀具涂层切削性能提高越明显。  相似文献   

15.
Cutting performance of PVD-coated carbide and CBN tools in hardmilling   总被引:3,自引:0,他引:3  
In this study, cutting performance of CBN tools and PVD-coated carbide tools in end-milling of hardened steel was investigated. In high-speed dry hardmilling, two types of CBN tools were applied: the CBN-rich type and an ordinary one. In the case of relatively low-speed milling, on the other hand, a few coated carbide tools were selected where four kinds of coating films, TiN, TiCN, TiAlN and multi-layered TiAlN/AlCrN, were deposited on the K10 and P30 grade carbide. The cutting performance was mainly evaluated by tool wear, cutting temperature, cutting force and surface roughness. In dry cutting of hardened carbon steel with the ordinary CBN tool, the cutting tool temperature rose rapidly with increase in cutting speed; and tool temperature reached approximately 850 °C at the cutting speed of 600 m/min. In the case of the CBN-rich tool, the cutting temperature decreased by 50 °C or more because of its high thermal conductivity. It is remarkable that tool wear or damage on a cutting tool was not observed even when the cutting length was 156 m in both CBN tools. In the case of coated carbide tools, the temperatures of TiN-, TiCN- and TiAlN-coated carbide tools rose as cutting proceeded because of the progress of tool wear, but that of TiAlN/AlCrN-coated carbide tool hardly rose due to little tool wear. When the base material was K10 grade carbide, tool temperature was lower than that of P30 with any coating. The tool flank wear depends considerably on hardness and oxidizing temperature of the coating film.  相似文献   

16.
This paper is concerned with the experimental and numerical study of face milling of Ti-6Al-4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool-chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.  相似文献   

17.
To inhibit chips burning in the high-speed cutting of Ti-6Al-4V, nitrogen gas with 0.7 MPa pressure was ejected at the milling zone. The high speed flowing of nitrogen gas speeds up the chips leaving, and prevents the chips from burning at the same time. By this method the cutting force is reduced. Especially, the temperature increment of the finished surface is smaller than 5 ℃. This prevents the increase of hardness, improves the roughness of the finished surface, and reduces the tools wear. Comparing and analyzing the morphology and color of chips, which are obtained from the high-speed machining of Ti-6Al-4V with and without nitrogen gas ejection, show the action mechanism of nitrogen gas during the high-speed machining of titanium alloy, and it is concluded that nitrogen gas can be used to realize the proper high-speed milling of Ti-6Al-4V titanium alloy.  相似文献   

18.
An experimental investigation was conducted in this work to analyze the effect of the workpiece microstructure on tool wear behavior and stability of the cutting process during marching difficult to cut titanium alloys: Ti–6Al–4V and Ti-555. The analysis of tool–chip interface parameters such as friction, temperature rise, tool wear and workpiece microstructure evolution under different cutting conditions have been investigated. As the cutting speed increases, mean cutting forces and temperature show different progressions depending on the considered microstructure. Results show that wear modes of cutting tools used for machining the Ti-555 alloy exhibit contrast from those obtained for machining the Ti–6Al–4V alloy. Because of the fine-sized microstructure of the near-β titanium Ti-555, abrasion mode was often found to be the dominate wear mode for cemented cutting tools. However, adhesion and diffusion modes followed by coating delamination process were found as the main wear modes when machining the usual Ti–6Al–4V alloy by the same cutting tools. Moreover, a deformed layer was detected using SEM–EDS analysis from the sub-surface of the chip with β-grains orientation along the chip flow direction. The analysis of the microstructure confirms the intense deformation of the machined surface and shows a texture modification.  相似文献   

19.
Machining of hard to cut materials such as hardened steels and high temperature strong aerospace materials is a challenge of modern manufacturing. Two categories of the aluminum-rich TiAlN-based Physical Vapor Deposited (PVD) coatings, namely AlTiN and TiAlCrN, are commonly used for this area of application. A comparative investigation of the structural characteristics, various micro-mechanical properties, oxidation resistance and service properties of the both coatings has been performed.Crystal structure has been studied using High Resolution Transmission Electron Microscopy (HR TEM). Electronic structure has been investigated using X-ray Photoelectron Spectroscopy (XPS). Micro-mechanical properties (microhardness, plasticity index, impact fatigue fracture resistance) have been evaluated using a Micro Materials Nano-Test System. Short-term oxidation resistance has been studied at 900 °C in air. The tool life of the coating was studied during ball nose end milling of hardened H 13 tool steel as well as end milling of aerospace alloys such as Ni-based superalloy (Waspalloy) and Ti alloy (TiAl6V4).It was shown that the set of characteristics that control wear performance strongly depend on specific applications. For machining of hardened tool steels, when heavy loads/high temperatures control wear behavior, the coating has to possess a well-known combination of high hot hardness and improved oxidation resistance at elevated temperatures. To achieve these properties, crystal structure for TiAlN-based coatings should be mainly B1, and elemental composition of the coating should ensure formation of strong inter-atomic bonds such as Al-Cr metal-covalent bonds in the TiAlCrN coating. Nano-crystalline structure with grain size of around 10-30 nm enhances necessary properties of the coating.In contrast, for machining of aerospace alloys, when elevated load/temperature combined with intensive adhesive interaction with workpiece material results in unstable attrition wear with deep surface damage, the coating should possess a different set of characteristics. Crystal structure for TiAlN-based coatings is basically B1; but due to a high amount of aluminum, the AlTiN coating contains AlN domains. The coating has a very fine-grained nano-crystalline structure (grains sized around 5 nm). Electron structure of energy levels indicates formation of metallic bonds. This results in plasticity increase at the cost of hot hardness reduction. The surface is able to dissipate energy by means of plastic deformation (instead of crack formation) and in this way, surface damage is reduced.  相似文献   

20.
在车铣复合加工中心Mazak Integrex 200Y上,切削速度为v=150、200 m/min及干式切削条件下,采用硬质合金刀具H13A对钛合金TC4进行正交车铣(顺铣)磨损试验。研究表明高速正交车铣钛合金时,正常磨损阶段前刀面出现不同程度切屑黏结及积屑瘤,后刀面主要以黏结磨损为主,磨损相对均匀;急剧磨损阶段,前刀面切屑黏结加剧,形成连续切屑,缠绕刀具;后刀面由于黏结作用刀具材料被切屑黏结物带走,形成黏结凹坑。刀具磨损的主要原因为黏结磨损、氧化磨损,通过X射线电子能谱(XPS)证明刀具磨损表面有TiO_2、WO_3和Co_3O_4等氧化物生成,分析其对刀具磨损的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号