首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
氧化石墨烯纳米带杂化粒子是将氧化石墨烯纳米带(GONRs)与其他纳米粒子经π-π键、氢键等结合方式复合在一起,通过这种特殊的结合形态一方面可以有效地防止GONRs的聚积,另一方面新的纳米粒子的引入能够赋予该杂化材料某些特殊的性能,从而有利于充分发挥GONRs杂化材料在聚合物改性等领域的综合性能。本文综述了氧化石墨烯纳米带杂化粒子的制备方法、性能和应用现状。此外,针对GONRs的还原产物石墨烯纳米带(GNRs)的结构、性能、制备方法及其应用领域也进行了系统性地论述。相关研究表明,氧化石墨烯纳米带杂化粒子的设计与制备是氧化石墨烯纳米带迈向实用领域的一个有效途径,而石墨烯纳米作为石墨烯的一种特殊结构的二维变体,继承了石墨烯优良的导电和导热等性能,同时特殊的边缘效应,因而呈现出了更广阔的应用潜力。  相似文献   

2.
Isolated graphene nanoribbons(GNRs)usually have energy gaps,which scale with their widths,owing to the lateral quantum confinement effect of GNRs.The absence of metallic GNRs limits their applications in device interconnects or being one-dimensional physics platform to research amazing properties based on metallicity.A recent study published in Science provided a novel method to produce metallic GNRs by inserting a symmetric superlattice into other semiconductive GNRs.This finding will broader the applications of GNRs both in nanoelectronics and fundamental science.  相似文献   

3.
王晓伟  胡慧芳 《材料导报》2014,28(24):18-21
基于密度泛函理论的第一性原理,计算了锰原子单空位掺杂锯齿型石墨烯纳米带6种不同位置时的电磁学特性。结果表明:锰原子掺杂石墨烯纳米带的能带结构对掺杂位置十分敏感。随着锰掺杂位置的变化,掺杂石墨烯纳米带分别表现出半导体性和金属性特征。锰原子掺杂石墨烯纳米带改变了原本的磁性特征,掺杂位置不同,结构磁性特点也不相同,掺杂位置在4号位置时,纳米带实现了由反铁磁态的锯齿型石墨烯纳米带向铁磁性的转化。锰原子掺杂锯齿型石墨烯纳米带可以调制其磁性和能带特性,为石墨烯纳米带在电磁学领域应用提供一定的理论依据。  相似文献   

4.
5.
6.
7.
An extended tight-binding (TB) model that includes up to third-nearest-neighbour hoppings and a mean-field Hubbard U interaction is used within the Landauer formalism to model the spin-dependent properties of a small zig-zag-edged graphene nanoribbon with a V-shaped notch. The TB calculation for this system is shown to accurately reproduce ab initio transport results obtained using the local spin-density approximation. The TB transport model is then applied to a larger V-shaped notched graphene nanoribbon that is beyond computational efficiency for ab initio transport calculations. In both cases, the TB model predicts well-defined spin-dependent properties.  相似文献   

8.
基于第一性原理计算,研究了掺杂对锯齿形石墨烯纳米带电子输运性质的影响。研究发现,掺杂原子种类、掺杂位置的不同将对电子输运产生极大的影响。当中间散射区域的中心C原子被B杂质原子代替时,在电子输运谱的费米能级以下会出现一个零透射的波谷,而另一侧则不变;当带中心杂质为N原子时情况正好相反。零透射波谷的出现意味着有带隙产生,即发生了从金属到半导体的转变。当杂质原子从中心位置移到带边缘时,波谷将移到费米能级的另一侧,从而引起从受主到施主特征的转变,这是杂质原子的束缚态与边缘态相互作用的结果。  相似文献   

9.
10.
Classical molecular dynamics based on the Brenner potential and Nosé–Hoover thermostat has been used to study the thermal conductivity and thermal rectification (TR) of graphene nanoribbons. An appreciable TR effect in triangular and trapezoidal nanoribbons was found. The TR factor is over 20 % even for 23?nm long monolayer triangular nanoribbons. The TR in graphene nanoribbons may enable novel nanoscale heat management and information processing using phonons.  相似文献   

11.
本文采用密度泛函理论,研究了边缘氧化扶手椅型石墨烯纳米带(AGNRs)的电子结构和相对稳定性.结果表明,边缘氧化的AGNRs要比边缘氢化的纳米带稳定.由于氧原子比碳原子具有较大的电负性,边缘氧化AG-NRs表现出金属性能带结构.此外,氧饱和AGNRs比氢饱和AGNRs对电场作用更为敏感,这将有助于在带隙工程中实现其电子结构剪裁.  相似文献   

12.
1D graphene nanoribbons (GNRs) have a bright future in the fabrication of next-generation nanodevices because of their nontrivial electronic properties and tunable bandgaps. To promote the application of GNRs, preparation strategies of miscellaneous GNRs have to be developed. The GNRs prepared by top-down approaches are accompanied by uncontrolled edges and structures. In order to overcome the difficulties, bottom-up methods are widely used in the growth of various GNRs due to controllability of GNRs' features. Among those bottom-up methods, the on-surface synthesis is a promising approach to prepare GNRs with distinct widths, edge/backbone structures, and so forth. Therefore, modified engineering of the GNRs prepared via on-surface synthesis is of great significance in controllable preparation of GNRs and their potential applications. In the past decade, there have been a lot of reports on controllable preparation of GNRs using on-surface synthesis approach. Herein, the advances of GNRs grown via on-surface growth strategy are described. Several growth parameters, the latest advances in the modification of the GNR structure and width, the GNR doping/co-doping with heteroatoms, a variety of GNR heterojunctions, and the device application of GNRs are reviewed. Finally, the opportunities and challenges are discussed.  相似文献   

13.
Nanostructured thermoelectric materials are promising for modulating physical properties to achieve high thermoelectric performance. In this paper, thermal transport properties of armchair/zigzag graphene superlattice nanoribbons (A/Z graphene SLNRs) are investigated by performing nonequilibrium molecular dynamics simulations. The target of the research is to realize low thermal conductivity by introducing single-vacancy point defects. Our simulations demonstrate that the thermal conductivity of A/Z graphene SLNRs depends nonmonotonically on periodic length. In addition, introducing single-vacancy point defects into the superlattice nanoribbons could decrease the phonon tunneling in superlattice nanoribbons, so that the thermal conductivity could be reduced further. Furthermore, a monotonic dependence of the thermal conductivity of A/Z graphene SLNRs with length of zigzag part in periodic length is discovered. This phenomenon is explained by performing phonon property analysis. Our simulations deliver a detailed phonon transport in A/Z graphene SLNRs and provide useful guidance on how to engineer the thermal transport properties of A/Z graphene SLNRs for applications of nanoribbon-related devices in thermoelectrics.  相似文献   

14.
Graphene is a truly two‐dimensional atomic crystal with exceptional electronic and mechanical properties. Whereas conventional bulk and thin‐film materials have been studied extensively, the key mechanical properties of graphene, such as tearing and cracking, remain unknown, partly due to its two‐dimensional nature and ultimate single‐atom‐layer thickness, which result in the breakdown of conventional material models. By combining first‐principles ReaxFF molecular dynamics and experimental studies, a bottom‐up investigation of the tearing of graphene sheets from adhesive substrates is reported, including the discovery of the formation of tapered graphene nanoribbons. Through a careful analysis of the underlying molecular rupture mechanisms, it is shown that the resulting nanoribbon geometry is controlled by both the graphene–substrate adhesion energy and by the number of torn graphene layers. By considering graphene as a model material for a broader class of two‐dimensional atomic crystals, these results provide fundamental insights into the tearing and cracking mechanisms of highly confined nanomaterials.  相似文献   

15.
采用基于密度泛函理论的第一性原理计算方法,研究了边缘对称和反对称的锯齿型石墨烯纳米带的电子结构,考察了BN链掺在不同位置时的影响.研究结果表明:B-N原子链有向边缘迁移的现象,并且其掺杂在石墨烯纳米带中央时对体系电子结构的改变很小,而掺杂在边缘时会使体系在费米能级附近的能带结构发生显著的变化.边缘被B-N链取代的石墨烯纳米带的能隙被打开,并产生了明显的自旋非简并现象.这些现象的出现归因于掺杂体系中边缘电子态的重新分布.  相似文献   

16.
Graphene nanoribbons (GNRs) are quasi-1D graphene strips, which have attracted attention as a novel class of semiconducting materials for various applications in electronics and optoelectronics. GNRs exhibit unique electronic and optical properties, which sensitively depend on their chemical structures, especially the width and edge configuration. Therefore, precision synthesis of GNRs with chemically defined structures is crucial for their fundamental studies as well as device applications. In contrast to top-down methods, bottom-up chemical synthesis using tailor-made molecular precursors can achieve atomically precise GNRs. Here, the synthesis of GNRs on metal surfaces under ultrahigh vacuum (UHV) and chemical vapor deposition (CVD) conditions is the main focus, and the recent progress in the field is summarized. The UHV method leads to successful unambiguous visualization of atomically precise structures of various GNRs with different edge configurations. The CVD protocol, in contrast, achieves simpler and industry-viable fabrication of GNRs, allowing for the scale up and efficient integration of the as-grown GNRs into devices. The recent updates in device studies are also addressed using GNRs synthesized by both the UHV method and CVD, mainly for transistor applications. Furthermore, views on the next steps and challenges in the field of on-surface synthesized GNRs are provided.  相似文献   

17.
2D materials with low symmetry are explored in recent years because of their anisotropic advantage in polarization-sensitive photodetection. Herein the controllably grown hexagonal magnetic semiconducting α-MnTe nanoribbons are reported with a highly anisotropic (100) surface and their high sensitivity to polarization in a broadband photodetection, whereas the hexagonal structure is highly symmetric. The outstanding photoresponse of α-MnTe nanoribbons occurs in a broadband range from ultraviolet (UV, 360 nm) to near infrared (NIR, 914 nm) with short response times of 46 ms (rise) and 37 ms (fall), excellent environmental stability, and repeatability. Furthermore, due to highly anisotropic (100) surface, the α-MnTe nanoribbons as photodetector exhibit attractive sensitivity to polarization and high dichroic ratios of up to 2.8 under light illumination of UV-to-NIR wavelengths. These results demonstrate that 2D magnetic semiconducting α-MnTe nanoribbons provide a promising platform to design the next-generation polarization-sensitive photodetectors in a broadband range.  相似文献   

18.
Calculation of electronic structures has been performed for graphene nanoribbons with eight-armchair edges containing nitrogen or boron substitutional impurity by using ab initio density functional theory. It is found that the electronic structures of the doped graphene nanoribbon are different from those of doped carbon nanotubes. The impurity levels are autoionized, so that the relevant charge carriers occupy the conduction or valence bands. The donor and acceptor levels are derived mainly from the lowest unoccupied orbital and highest occupied orbital of pristine graphene nanoribbon, respectively. N introduces an impurity level above the donor level, while an impurity level introduced by B is below the acceptor level. The doped graphene nanoribbons with armchair edges are inactive compared to the doped carbon nanotubes around the impurity site, which may indicate that the doped graphene nanoribbons with armchair edges could be more stable than the doped carbon nanotubes at the ambient.   相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号