首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid activation gene (FAA1) in sake yeast Kyokai no. 701 (K701) was disrupted to investigate the accumulation of ethyl caproate in sake mash. Ethyl caproate, recognized as an important apple-like flavor in sake, is generated by fatty acid synthesis in yeast cells. The disruptant for the FAA1 gene (K701Δfaa1) exhibited a reduced growth rate in a medium containing cerulenin and myristic acid or oleic acid compared with that of the parental strain (K701). In a sake brewing test in which the rice used was polished to 60% of its original size, the fermentation ability of K701Δfaa1 was inferior to that of K701 but the production of ethyl caproate by K701Δfaa1 was 1.6-fold higher than that by K701. These results suggest that the FAA1 gene in sake yeast plays an important role in sake brewing and the accumulation of ethyl caproate.  相似文献   

2.
从采自沧州良种枣繁育基地的200份枣果实样品中利用含有10%乙醇的YPD平板分离、筛选得到了36株耐酒精酵母菌株,其中一株酵母能产生愉悦的水果香味,命名为C-42。通过形态学,生理生化实验和18S rDNA序列同源性比对,证明该株酵母菌是异威克汉逊酵母(Wickerhamomyces anomalus)。气相色谱分析表明酵母菌株C-42在麦芽汁培养基中发酵一周后可产生乙酸乙酯,浓度可达154mg/L,说明该菌株在发酵工业中具有应用潜力。   相似文献   

3.
己酸乙酯是浓香型白酒的重要风味物质,提高浓香型基酒中己酸乙酯含量有助于提高其优质酒率。通过传统筛选方法从不同酒曲中筛选出1株高产己酸乙酯酵母,采用形态观察、生理生化分析和分子生物学对其进行鉴定,并通过单因素试验优化发酵条件。从源于不同酒曲的79株酵母中确定了1株高产己酸乙酯酵母,命名为Y9,并鉴定为Hyphopichia burtonii。酵母Y9具有优良的NaCl、葡萄糖、乙醇和己酸乙酯耐受性以及宽广的pH适应性,能够较好地适应浓香型白酒酿造环境。在糖度为14°Brix、初始pH 5.0、诱导温度22℃且静置发酵、乙醇体积分数8%、己酸体积分数0.04%、发酵时间60 h时,酵母Y9所产己酸乙酯质量浓度达到15.0 mg/L。该研究为产香酵母Y9更好地应用于白酒发酵提供了理论基础。  相似文献   

4.
Sake yeasts take up gamma-aminobutyric acid (GABA) derived from rice-koji in the primary stage of sake brewing. The GABA content in sake brewed with the UGA1 disruptant, which lacked GABA transaminase, was higher than that brewed with the wild-type strain K701. The UGA1 disruptant derived from sake yeast could not grow on a medium with GABA as the sole nitrogen source. We have isolated the sake yeast mutants of K701 that were unable to grow on a medium containing GABA as the sole nitrogen source. The growth defect of GAB7-1 and GAB7-2 mutants on GABA plates was complemented by UGA1, which encodes GABA transaminase, and UGA2, which encodes succinic semialdehyde dehydrogenase (SSADH), respectively. DNA sequence analysis revealed that GAB7-1 had a homozygous nonsense mutation in UGA1 and GAB7-2 had a heterozygous mutation (G247D) in UGA2. The GABA transaminase activity of GAB7-1 and the SSADH activity of GAB7-2 were markedly lower than those of K701. These GAB mutants displayed a higher intracellular GABA content. The GABA contents in sake brewed with the mutants GAB7-1 and GAB7-2 were 2.0 and 2.1 times higher, respectively, than that brewed with the wild-type strain K701. These results suggest that the reduced function of the GABA utilization pathway increases the GABA content in sake.  相似文献   

5.
Screening of drug‐resistant mutants of sake yeast strains has been a major method for creation of superior strains. We attempted to create a valproic acid (VPA)‐resistant mutant strain from sake yeast Kyokai No. 7 (K7). VPA is a branched‐chain fatty acid and is an inositol synthesis inhibitor in mammals and yeast. We succeeded in isolating a mutant of strain K7 that can survive long‐term in a VPA‐containing medium. This strain, K7‐VPALS, is significantly more resistant to not only VPA‐induced cell death but also ethanol in comparison with the parent strain. Further experiments showed that the new strain is likely to have a deficiency in inositol and/or phosphatidylinositol synthesis. The major characteristics of sake brewed by strain K7‐VPALS (compared with K7) were lower amino acidity, higher isoamyl acetate content without an increase in the isoamyl alcohol level and changes in constituent organic acids, particularly higher malate and succinate but lower acetate concentrations. In addition, taste sensor analysis revealed that K7‐VPALS‐brewed sake has milder sourness and higher saltiness or richness than K7‐brewed sake does. High isoamyl acetate production may be related to a deficiency in phosphatidylinositol because this compound directly inhibits alcohol acetyltransferase, an enzyme responsible for isoamyl acetate synthesis. Strain K7‐VPALS grew more rapidly than the parental strain did in a medium containing acetate as a sole carbon source, indicating that K7‐VPALS effectively assimilates acetate and converts it to malate and succinate through the glyoxylate cycle. Thus, strain K7‐VPALS shows improved characteristics for brewing of high‐quality sake. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

6.
Succinate dehydrogenase (SDH) of Saccharomyces cerevisiae consists of four subunits encoded by the SDH1, SDH2, SDH3, and SDH4 genes. We determined the effect of SDH deficiency on the productivity of organic acids in a sake yeast strain Kyokai no. 9. The SDH activity of single disruptants was retained at 30-90% of that of the wild-type strain, but the activity disappeared in double disruptants of the SDH1 and SDH2 or SDH1b (the SDH1 homologue) genes. Two double disruptants showed no growth on a medium containing glycerol as the sole carbon source, while the single disruptants could utilize glycerol. These results indicate that double disruption of the SDH1 and SDH2 or SDH1b genes is required for complete loss of SDH activity and that the SDH1b gene compensates for the function of the SDH1 gene. The sdh1 sdh1b disruptant showed a marked increase in succinate productivity of up to 1.9-fold along with a decrease in malate productivity relative to the wild-type strains under shaking conditions. Under both static and sake brewing conditions, the productivity of these organic acids in the disruptants was virtually unchanged from that in the wild-type strain. Furthermore, SDH activity was undetectable in the wild-type and the disrupted strains under static conditions. These results suggest that SDH activity contributes to succinate production under shaking conditions, but not under static and sake brewing conditions.  相似文献   

7.
We previously demonstrated the presence and fragmentation of mitochondria during alcohol fermentation. Here, we show that Fis1p induces mitochondrial fragmentation, and inhibition of mitochondrial fragmentation causes higher malate production during sake brewing. These findings indicate that mitochondrial morphology affects the metabolism of constituents, providing a breeding strategy for high-malate-producing yeasts.  相似文献   

8.
9.
从豉香型白酒酒饼中分离获得高产乙酸乙酯酵母菌J10,其乙酸乙酯产量为3.119g/L。根据对该乙酸乙酯产生菌的形态学特征和5.8S r DNA-ITS序列分析,鉴定该菌为异常毕赤酵母。通过采用单因素和正交实验对该菌发酵条件进行优化,获得该菌的最佳发酵条件:小麦糖化液起始糖度10°Bx,p H4.0,发酵温度28℃,发酵时间3d。在此优化条件下,乙酸乙酯产量达8.05g/L,比优化前提高158.04%。   相似文献   

10.
Malate is an important taste component of sake (a Japanese alcoholic beverage) that is produced by the yeast Saccharomyces cerevisiae during alcoholic fermentation. A variety of methods for generating high malate‐producing yeast strains have been developed to date. We recently reported that a high malate‐producing strain was isolated as a mutant sensitive to dimethyl succinate (DMS), and that a mutation in the vacuolar import and degradation protein (VID) 24 gene was responsible for high malate productivity and DMS sensitivity. In this work, the relationships between heterozygous and homozygous mutants of VID24 and malate productivity in diploid sake yeast were examined and a method was developed for breeding a higher malate‐producing strain. First a diploid yeast was generated with a homozygous VID24 mutation by genetic engineering. The homozygous integrants produced more malate during sake brewing and grew more slowly in DMS medium than wild‐type and heterozygous integrants. Thus, the genotype of the VID24 mutation influenced the level of malate production and sensitivity to DMS in diploid yeast. Then a homozygous mutant from a heterozygous mutant was obtained without genetic engineering by ultraviolet irradiation and culturing in DMS with nystatin enrichment. The non‐genetically modified sake yeast with a homozygous VID24 mutation exhibited a higher level of malate productivity than the parent heterozygous mutant strain. These findings provide a basis for controlling malate production in yeast, and thereby regulating malate levels in sake. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

11.
目的优化白酒中甲醇、乙酸乙酯和己酸乙酯同时测定的气相色谱仪器分析条件。方法优化色谱条件为:HP-INNOWax(30 m×0.250 mm, 0.25 μm)石英毛细管柱,程序升温分离,流速1.4 mL/min,进样量1.00 μL,氢火焰离子化检测器检测。采用直接进样法结合标准溶液定性定量。结果在优化的色谱条件下,白酒中甲醇、乙酸乙酯和己酸乙酯在0.01~2.0 g/L范围内线性良好,相关系数(r)均大于0.999,定量限为0.02~0.03 g/L,平均回收率为90.3~104%,相对标准偏差在0.660~4.76%(n=6)之间。结论 该方法具有操作简便、快速、准确的特点,适用于白酒中甲醇、乙酸乙酯和己酸乙酯的同时分析。  相似文献   

12.
Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.  相似文献   

13.
高产乙酸乙酯酵母菌筛选及固态发酵应用研究   总被引:1,自引:0,他引:1  
为提高清香型麸曲白酒中乙酸乙酯的含量,从已有菌株中筛选一株高产乙酸乙酯的酵母菌,将其应用于白酒固态发酵实验,并对其发酵条件进行研究。结果表明,筛选得到一株高产乙酸乙酯的酵母菌J-4,乙酸乙酯产量为1.38 g/L,经初步发酵实验表明,其最适固态发酵工艺条件为高粱粉与酒糟质量比1.0∶4.5,发酵时间7 d,酒醅入发酵容器后,以正常压力进行压醅(醅料密度为331.43 kg/m3),所得原酒中乙酸乙酯含量为1.31 g/L,出酒率为46.3%,均达到较高水平。进一步将酵母菌J-4应用于麸曲白酒酿造生产中,以不添加产酯酵母发酵为对照,采用相同生产工艺酿造白酒。结果表明,添加酵母菌J-4发酵生产原酒酒样中乙酸乙酯含量达1.07 g/L,比对照组增长50.7%,出酒率为45.3%,比对照组降低0.87%,原酒口感品质有明显改善。  相似文献   

14.
15.
以不同酒曲中筛选出的一株产乙酸乙酯能力较强的酵母Y2为研究对象,利用磷脂脂肪酸分析和分子生物学方法对其进行鉴定,通过单因素试验分别考察培养方式、发酵时间、发酵温度和糖化液糖度4个因素对酵母Y2产酯能力的影响,采用正交试验和验证试验对酵母Y2的产酯条件进行优化。结果表明,酵母Y2为异常毕赤酵母(Pichia anomala),其脂肪酸成分以18∶1ω9c为主;发酵温度和发酵时间对酵母菌株Y2产酯量具有显著性影响(P<0.05),优化后的产酯条件为:发酵温度28 ℃,高粱糖化液糖度12 °Bx,静置培养5 d;在此最优条件下,酵母Y2产乙酸乙酯的量可达到3.47 g/L。  相似文献   

16.
Sake yeasts are used for sake brewing and have a crucial role in the quality of sake, since they produce not only ethanol but also various compounds that provide sake flavors. Therefore, the appropriate selection and monitoring of a strain used in sake mash is important. However, the identification of specific sake yeast strains has been difficult, because sake yeasts have similar characteristics in taxonomic and physiological analyses. We found amplified fragment length polymorphisms (AFLPs) in the PCR products of the AWA1 gene of sake yeast strains. The AWA1 gene encodes a cell wall protein that is responsible for foam formation in sake mash. This polymorphism of the AWA1 gene can be used for the identification of sake yeast strains.  相似文献   

17.
We characterized a high malic acid production mechanism in sake yeast strain No. 28. No considerable differences in the activity of the enzymes that were involved in malic acid synthesis were observed between strain No. 28 and its parent strain, K1001. However, compared with strain K1001, which actively took up rhodamine 123 during staining, the cells of strain No. 28 were only lightly stained, even when cultured in high glucose concentrations. In addition, malic acid production by the respiratory-deficient strain of K1001 was 2.5-fold higher than that of the wild-type K1001 and wild-type No. 28. The findings of this study demonstrated that the high malic acid production by strain No. 28 is attributed to the suppression of mitochondrial activity.  相似文献   

18.
By application of the high-efficiency loss of heterozygosity (HELOH) method for disrupting genes in diploid sake yeast (Kotaka et al., Appl. Microbiol. Biotechnol., 82, 387–395 (2009)), we constructed, from a heterozygous integrant, a homozygous diploid that overexpresses the alcohol acetyltransferase gene ATF2 from the SED1 promoter, without the need for sporulation and mating. Under the conditions of sake brewing, the homozygous integrant produced 1.4 times more isoamyl acetate than the parental, heterozygous strain. Furthermore, the homozygous integrant was more genetically stable than the heterozygous recombinant. Thus, the HELOH method can produce homozygous, recombinant sake yeast that is ready to be grown on an industrial scale using the well-established procedures of sake brewing. The HELOH method, therefore, facilitates genetic modification of this rarely sporulating diploid yeast strain while maintaining those characteristics required for industrial applications.  相似文献   

19.
We here demonstrate that folate content in yeast fermented food can be dramatically increased by using a proper (i) yeast strain and (ii) cultivation procedure for the selected strain prior to food fermentation. Folate levels were 3 to 5-fold higher in white wheat bread leavened with a Saccharomyces cerevisiae strain CBS7764, cultured in defined medium and harvested in the respiro-fermentative phase of growth prior to dough preparation (135-139 microg/100 dry matter), compared to white wheat bread leavened with commercial Baker's yeast (27-43 microg/100 g). The commercial Baker's yeast strain had been industrially produced, using a fed-batch process, thereafter compressed and stored in the refrigerator until bakings were initiated. This strategy is an attractive alternative to fortification of bread with synthetically produced folic acid. By using a high folate producing strain cultured a suitable way folate levels obtained were in accordance with folic acid content in fortified cereal products.  相似文献   

20.
Kyokai no. 7 is the most widely used yeast in sake brewing. This yeast is a pantothenic acid auxotroph at 35 degrees C, and this phenotype has been used to distinguish Kyokai no. 7 from other sake yeasts. We cloned a DNA fragment complementing the pantothenic acid auxotrophy from a genomic library of a Saccharomyces cerevisiae laboratory strain. DNA sequence analysis revealed that the DNA fragment encodes ECM31, the deletion of which had previously been identified as a calcofluor white-sensitive mutation. The ECM31 product is similar to the Escherichia coli ketopantoate hydroxymethyltransferase. Disruption of ECM31 in a laboratory S. cerevisiae strain resulted in pantothenic acid auxotrophy, indicating that ECM31 is also involved in pantothenic acid synthesis in yeast. A hybrid of a Kyokai no. 7 haploid and the ecm31 disruptant required pantothenic acid at 35 degrees C for its growth, suggesting that Kyokai no. 7 possesses a temperature-sensitive allele of ECM31. Thus, the ECM31 gene can be used as a selective marker in the transformation of Kyokai no. 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号