首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
殷上轶  宋涛 《化工学报》2018,69(9):3954-3964
我国准东煤储量丰富,钠含量高。以高钠准东煤为燃料,CO2为气化介质,铁矿石为载氧体,基于鼓泡流化床反应器开展准东煤化学链燃烧特性的实验研究,考察了煤粒径、温度、流化风速和煤焦粒径对煤及煤焦化学链燃烧过程中可燃气体逃逸规律的影响;同时研究了煤中矿物质对煤焦气化过程的影响。结果表明,在基于鼓泡流化床实施的煤化学链燃烧过程中,由于煤颗粒和载氧体床料流化特性差异大,存在离析现象;离析影响煤化学链燃烧过程中挥发分和焦炭的转化;较高流化风速可显著增强载氧体与煤/焦炭颗粒的混合,有效改善离析对可燃气体转化的影响,降低可燃气体逃逸,并加快焦炭气化速率;煤焦中的矿物质能够维持煤焦较快的气化速率。  相似文献   

2.
高温悬浮态的煤焦燃烧反应动力学研究   总被引:1,自引:0,他引:1  
在高温气固悬浮态试验台上,对无烟煤、烟煤的煤焦燃烧模型进行了研究。在恒温条件下,分别获得A煤(无烟煤)煤焦与B煤(烟煤)煤焦的燃烧曲线,通过传递函数进行修正后的燃尽率与时间的关系曲线与已知的机理函数进行拟合,采用相关性系数选取最佳反应模型。对A煤煤焦与B煤煤焦的模型的动力学参数进行求解并拟合理论燃烧曲线,结果与实验的测定值吻合良好,表明动力学分析结果的可靠性。  相似文献   

3.
煤焦的燃烧特性和动力学模型研究   总被引:5,自引:2,他引:5  
对煤燃烧基础研究的最新进展情况进行了综述,重点介绍了有关煤焦燃烧特性研究、其常用的研究方法及燃烧动力学模型的发展状况,并提出了以煤部分气化、部分燃烧集成优化的煤分级利用的研究方向。  相似文献   

4.
从时间尺度和放热量来看,焦炭的反应在煤的整个燃烧过程中占有主导地位,而煤焦的微观结构与燃烧反应性有很大的关系,因此有必要进一步研究其影响因素和关系.本次研究选取了22种样品(涵盖了无烟煤、烟煤、贫煤、褐煤、煤泥和气化细渣)进行实验,用XRD对煤焦的微观晶体结构进行测量,用TGA对煤焦的燃烧反应性进行测量,从统计上研究不...  相似文献   

5.
生物质焦与煤焦及煤灰的流化特性研究   总被引:1,自引:0,他引:1  
在φ 115 mm×1 000 mm有机玻璃制成的圆柱型流化床中,对生物质焦、煤焦、煤灰及其混合颗粒的流化特性进行了实验研究.实验结果表明,单一生物质焦颗粒不能正常流化,煤焦和煤灰颗粒可以很好地流化.当煤焦和生物质焦混合颗粒中生物质焦颗粒的质量百分比小于33%时,两者混合颗粒可以达到较好的流化状态,煤焦和生物质焦双组分混合颗粒的最小流化速度随生物质焦质量百分比的增加而减小.生物质焦和煤焦的混合体系中添加煤灰,流化质量可进一步提高,生物质焦、煤焦和煤灰三组分混合颗粒的最小流化速度随着煤灰质量百分比的增加而增大.双组分和三组分混合颗粒的最小流化速度和经验公式预测结果具有良好的一致性.  相似文献   

6.
加压富氧燃烧被认为是一种更加高效清洁的第2代富氧燃烧技术而备受关注。热解作为煤燃烧的第1步,不同的热解条件(压力、气氛、升温速率等)将直接影响煤焦的物理和化学结构,导致其燃烧反应性的差异,目前加压富氧燃烧条件下,煤焦反应性与结构性质之间的关联研究鲜见报道。自主设计并建立了一套加压聚光光热快速升温试验平台,最大升温速率可达80℃/s,选用红沙泉(HSQ)和五彩湾(WCW)2种准东煤,制备了不同压力(常压~1.5 MPa)及热解气氛(N_2、CO_2)下的煤焦,采用比表面积分析仪、拉曼分析仪、热重分析仪等表征手段考察了压力及热解气氛对煤焦的结构特性及其燃烧反应性的影响。结果表明,在惰性N_2气氛下,HSQ和WCW煤在压力1.5 MPa时的煤焦产率较常压下分别增加了3.54%和10.49%;在CO_2气氛下,HSQ煤在压力1.5 MPa时的煤焦产率较常压下降低了16.40%,煤焦产率在2种气氛下随压力的改变呈相反趋势。N_2气氛下,随着压力从常压增至0.4 MPa, HSQ/WCW煤焦的比表面积增加,从24.20/14.85 m~2/g增至26.27/46.19 m~2/g,但压力继续增至1.5 MPa时,HSQ/WCW煤焦的比表面积呈下降趋势,从26.27/46.19 m~2/g降至21.21/39.46 m~2/g;相同压力下,CO_2气氛下制备的煤焦孔隙结构更发达,常压和1.5 MPa压力时,CO_2气氛下制备的HSQ煤焦比表面积分别为N_2气氛制备煤焦的6.46和9.03倍,这也是CO_2气氛下制备的HSQ煤焦燃烧反应性优于N_2气氛煤焦的主要原因。随着压力增加,2种气氛下,2种煤焦拉曼光谱分峰拟合计算得到的I_((GR+VL+VR))/I_D值均逐渐下降,煤焦的化学结构趋于更加稳定,这也使得高压下制备煤焦的燃烧反应性下降。但相同压力下,CO_2气氛下制备的HSQ煤焦I_((GR+VL+VR))/I_D值低于N_2气氛制备的HSQ煤焦,高压下由于CO_2与焦炭的气化反应增强,消耗更多的无定形碳,2种气氛的I_((GR+VL+VR))/I_D差异更明显,但由于物理孔隙结构差异的主导作用,使CO_2气氛下制备的HSQ煤焦燃烧反应性更好。可见,煤焦的燃烧反应性受其物理结构和化学结构的共同影响。  相似文献   

7.
煤粒着火及燃烧稳定性   总被引:5,自引:1,他引:5  
张静英  冯波 《煤炭转化》1997,20(3):63-68
用热天平研究了几种煤焦的化学着火时间,发现与环境温度有较明显的联系,并综合煤粒加热物理着火时间,提出了一个衡量煤在实际锅炉中的燃烧稳定性的影响。  相似文献   

8.
为了提高煤气化效率,分析了影响产能的重要因素——压力。研究了压力对煤热解过程、煤焦燃烧速度及煤焦气化反应的影响。研究发现:加压热解情况下,挥发分和焦油产率均下降,但煤气产量增加,推测是因为焦油发生二次反应造成的。随着压力的增大,煤焦明显膨胀且比表面积下降。但过高的压力下,膨胀度减弱,易生成孔隙率高、薄壁的煤焦颗粒。提高O2分压,煤燃烧速度加快且生成的小颗粒较多。提高气化剂分压,煤气化速度加快,且蒸汽分解速度大于CO2还原速度,但生成的煤气对气化反应有抑制作用。  相似文献   

9.
利用非等温热重法研究了由津凯褐煤、万泰烟煤、冀中能源无烟煤和骊达宁无烟煤4种煤在不同变质情况下制备所得煤焦的燃烧特性,利用随机孔模型(RPM)、收缩核未反应芯模型和体积模型模拟了煤焦燃烧反应过程. 结果表明,煤焦燃烧性能与煤粉变质程度、灰分含量和升温速率有关;降低煤粉灰分含量、提高升温速率能够明显加快煤焦燃烧速率,缩短燃烧时间. 动力学计算表明,RPM模型表征煤焦燃烧效果最优,由其所计算的4种煤焦的表观活化能分别为55.74,88.26,84.27和101.30 kJ/mol.  相似文献   

10.
刘俊然 《安徽化工》2015,41(3):15-17
探讨了煤焦二氧化碳气化工艺研究现状及其作为煤清洁利用途径的优势。目前,还没有单独用纯二氧化碳参与煤焦大规模气化的研究。该工艺可以减少大气中二氧化碳,是一种煤清洁利用的手段,具有很好的经济、社会和生态效益。  相似文献   

11.
Iron-based catalysts have been shown to enhance coal pyrolysis and char oxidation at low to moderate temperatures and heating rates (< 1250 K and 1–1000 K/s). Such catalytic activity has not been demonstrated at high heating rates and temperatures approaching pulverized coal combustion applications. The effect of an iron-based additive on coal pyrolysis and char combustion was studied in a flat-flame burner system at high particle heating rates using a Kentucky bituminous coal. Pyrolysis and char reactivity of two treated coals with different catalyst loadings were studied and compared with the untreated coal. The total volatiles yield for the treated coals increased between 14 and 18% (absolute) on a dry ash-free basis compared to the untreated coal in experiments conducted at 1300 K. A first-order char oxidation model was used to compare the apparent char reactivities of the treated and untreated coals measured at 1500 and 1700 K. An increase in apparent char reactivity was observed for both treated samples.  相似文献   

12.
《Fuel》2005,84(2-3):247-257
The aim of this study is to predict efficiency deviations in the combustion of coal blends in power plants. Combustion of blends, as compared to its single coals, shows that for some blends the behavior is non-additive in nature. Samples of coal feed and fly ashes from combustion of blends at two power plants, plus chars of the parent coals generated in a drop-tube furnace (DTF) at temperatures and heating rates similar to those found in the industrial boilers were used. Intrinsic kinetic parameters, burning profiles and petrographic characteristics of these chars correlated well with the burnout in power plants and DTF experiments. The blend combustion in a DTF reproduces both positive and negative burnout deviations from the expected weighted average. These burnout deviations have been previously attributed to parallel or parallel-series pathways of competition for oxygen. No deviations were found for blends of low rank coals of similar characteristics yielding chars close in morphology, optical texture and reactivity. Negative deviations were found for blends of coals differing moderately in rank and were interpreted as associated with long periods of competition. In this case, fly-ashes were enriched in material derived from the least reactive char, but also unburnt material attributed to the most reactive char was identified. Improved burnout compared to the weighted average was observed for blends of coals very different in rank, and interpreted as the result of a short interaction period, followed by a period where the less reactive char burns under conditions that are more favorable to its combustion. In this case, only unburned material from the least reactive char was identified in the fly-ashes.  相似文献   

13.
Lumps of six bituminous coals, from 20 to 40 mm in size, were devolatilized in a laboratory oven in nitrogen atmosphere at different final temperatures ranging from 300 to 800 °C. The structure and morphology of the resulting chars with different degree of devolatilization have been examined under an optical microscope in order to better understand the formation mechanism of different types of char. The swelling of the caking coals and the fissuring of the non-caking coals were characterised by image analysis and some correspondences between the distribution of lithotypes within the initial coal lumps and the char structure obtained were revealed. The relation between chars structure and properties was also investigated. The char lumps obtained from caking coal exhibit better resistance to breakage than their parent coal lumps while non-caking coals show the opposite behaviour. For both caking and non-caking coals, a significant decrease of resistance is observed in the intensive devolatilization temperature range from 400 to 600 °C.  相似文献   

14.
Twenty one US coals, of widely ranging rank, have been carbonized under controlled conditions to 1000 °C, and the reactivity in air at 500 °C of the resulting chars or cokes has been measured by a gravimetric method. The reactivities lie within a well-defined band when plotted against rank of the parent coal. The lower-rank coal chars are more reactive than those prepared from high-rank coals. In extreme cases, the reactivity found for a Montana lignite char is some 100 times as great as that obtained for a char produced from a Pennsylvania low-volatile coal. Variation of reactivity with heat-treatment temperature (600 to 1000 °C) has been studied for three coals. As heat-treatment temperature increases, there is a decrease in reactivity. Some results are reported on the effects which mineral matter and pore structure have on the reactivity parameter. Chars containing high concentrations of magnesium and calcium impurities are most reactive. The amount of macro and transitional porosity in a char has a marked influence on reactivity.  相似文献   

15.
Zongbin Zhao  Wen Li  Baoqing Li 《Fuel》2003,82(8):949-957
NO-char reaction and char combustion in the presence and absence of mineral matter were studied in a quartz fixed bed reactor. Eight chars were prepared in a fluidized bed at 950 °C from four Chinese coals that were directly carbonized without pretreatment or were first deashed before carbonization. The decomposition of NO over these coal-derived chars was studied in Ar, CO/Ar and O2/Ar atmospheres, respectively. The results show that NO is more easily reduced on chars from the raw coals than on their corresponding deashed coal chars. Mineral matter affects the enhancement both of CO and O2 on the reduction of NO over coal chars. Alkali metal Na in mineral matter remarkably catalyzes NO-char reaction, while Fe promotes NO reduction with CO significantly. The effect of mineral matter on the emission of NO during char combustion was also investigated. The results show that the mineral constituents with catalytic activities for NO-char reaction result in the decrease of NO emission, whereas mineral constituents without catalytic activities lead to the increase of NO emission. Correlation between the effects of mineral matter on NO-char reaction and NO emission during char combustion was also discussed.  相似文献   

16.
The effect of preoxidation of two highly caking coals in the temperature range 120–250 °C on weight loss during pyrolysis in a N2 atmosphere up to 1000 °C and reactivity of the resultant chars in 0.1 MPa air at 470 °C has been investigated. Preoxidation markedly enhances char reactivity (by a factor of up to 40); the effect on char reactivity is more pronounced for lower levels of preoxidation. For a given level of preoxidation, the oxidation temperature and the presence of water vapour in the air used during preoxidation have essentially no effect on weight loss during pyrolysis and char reactivity. An increase in particle size of the caking coals reduces the rate of preoxidation as well as subsequent char reactivity. Preoxidation of caking coals sharply increases the surface area of the chars produced. Compared to heat treatment in a N2 atmosphere, pyrolysis in H2 of either the as-received or preoxidized coal results in a further increase in weight loss and a decrease in subsequent char reactivity.  相似文献   

17.
Tightly constrained experimental thermogravimetry proves to be effective for characterising the effects of rank and maceral variations on Bowen Basin coal combustion behaviour. These coals show an increase in char burnout temperature with rank for both dull, inertinite-rich and bright, vitrinite-rich coals. Most dull coals have higher char burnout and peak combustion temperatures than their bright rank equivalents. The maximum rates of combustion for dull coals are lower than their bright counterparts, with the difference between the two varying with rank.  相似文献   

18.
Chars produced from lignites typically have much higher reactivities to gasification than those produced from bituminous coals. This has been attributed previously to the presence of carboxylate salts of inorganic constituents on the lignites. Upon charring of the lignites, the carboxylate salts decompose leaving behind well dispersed inorganic constituents which act as catalysts for gasification. In this study, a raw lignite has been treated with HCl and HF to demineralize it and to increase its carboxyl content prior to exchanging selected cations with the hydrogen on the carboxyl groups. Up to 2.14 mmol of calcium per g of coal could be added using this procedure. Addition of varying amounts of calcium to the lignite resulted in the production of chars containing calcium contents ranging from 1.1 to 12.9 wt %. Such addition resulted in a rectilinear increase in reactivity of the char to steam with increasing amount of calcium added. Maximum reactivity attained was over ten times the reactivity found for the char produced from the raw lignite. At comparable molar loadings of metal cations onto the acid-treated lignite, the chars subsequently produced had reactivities in steam in the order: K >NaCa >Fe >Mg. Char reactivity could also be enhanced by the addition of cations to nitric acid-treated char which had been produced, in turn, from demineralized lignite.  相似文献   

19.
Four high-inertinite and two low-inertinite coals have been studied with a view to establishing whether or not the reactivity of the two types of coal can be described in the same terms. It turned out that in most respects high- and low-inertinite coals behave similarly: they show the same correlations between VM content and total oxygen and aliphatic hydrogen content, and between char reactivity (air, 470°C) and VM content. Again, upon oxidation at 230°C in air the same surface groups form and in comparable amounts, while the effects of this (pre)oxidation step on VM content and char reactivity are also alike. Reduction with HI does not discriminate between these coals either. Yet, in one respect, the high- and low-inertinite coals differ: the extract yield obtained in basic organic solvents is much lower for the former than for the latter type of coals. After preoxidation, however, this difference is no longer noticeable.  相似文献   

20.
The reactivities of 34 coal chars of varying rank with H2O have been determined to examine the effect of coal rank on the gasification rate of coal char. The reactivities of chars derived from caking coals and anthracites (carbon content > 78 wt%, daf) were very small compared with those from non-caking (lower-rank) coals. The reactivities of low-rank chars do not correlate with the carbon content of the parent coals. To clarify which factor is more important in determining the reactivity, the evolution of CO and CO2 from char, the moisture content of char and the amount of exchangeable cations were determined for these low-rank coals or their chars. These values were considered to represent the amount of active carbon sties, the porosity and the catalysis by inherent mineral matters, respectively. It was concluded that the amount of surface active sites and/or the amount of exchangeable Ca and Na control the reactivity of low-rank chars in H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号