首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cu pillar is a thick underbump metallurgy (UBM) structure developed to alleviate current crowding in a flip-chip solder joint under operating conditions. We present in this work an examination of the electromigration reliability and morphologies of Cu pillar flip-chip solder joints formed by joining Ti/Cu/Ni UBM with largely elongated ∼62 μm Cu onto Cu substrate pad metallization using the Sn-3Ag-0.5Cu solder alloy. Three test conditions that controlled average current densities in solder joints and ambient temperatures were considered: 10 kA/cm2 at 150°C, 10 kA/cm2 at 160°C, and 15 kA/cm2 at 125°C. Electromigration reliability of this particular solder joint turns out to be greatly enhanced compared to a conventional solder joint with a thin-film-stack UBM. Cross-sectional examinations of solder joints upon failure indicate that cracks formed in (Cu,Ni)6Sn5 or Cu6Sn5 intermetallic compounds (IMCs) near the cathode side of the solder joint. Moreover, the ~52-μm-thick Sn-Ag-Cu solder after long-term current stressing has turned into a combination of ~80% Cu-Ni-Sn IMC and ~20% Sn-rich phases, which appeared in the form of large aggregates that in general were distributed on the cathode side of the solder joint.  相似文献   

2.
In flip-chip solder joints, thick Cu and Ni films have been used as under bump metallization (UBM) for Pb-free solders. In addition, electromigration has become a crucial reliability concern for fine-pitch flip-chip solder joints. In this paper, the three-dimensional (3-D) finite element method was employed to simulate the current-density and temperature distributions for the eutectic SnPb solder joints with 5-μm Cu, 10-μm Cu, 25-μm Cu, and 25-μm Ni UBMs. It was found that the thicker the UBM is the lower the maximum current density inside the solder. The maximum current density is 4.37 × 104 A/cm2, 1.69 × 104 A/cm2, 7.54 × 103 A/cm2, and 1.34 × 104 A/cm2, respectively, when the solder joints with the above four UBMs are stressed by 0.567 A. The solder joints with thick UBMs can effectively relieve the current crowding effect inside the solder. In addition, the joint with the thicker Cu UBM has a lower Joule heating effect in the solder. The joint with the 25-μm Ni UBM has the highest Joule heating effect among the four models.  相似文献   

3.
SnPb-SnAgCu mixed solder joints with Sn-Pb soldering Sn-Ag-Cu Pb-free components are inevitably occurred in the high reliability applications. In this study, the interfacial behaviors in Sn-37Pb and Sn-3.0Ag-0.5Cu mixed solder joints was addressed and compared with Sn-37Pb solder joints and Sn-3.0Ag-0.5Cu solder joints with the influence from isothermal aging and electromigration. Considering the difference on the melting point between Sn-3.0Ag-0.5Cu and Sn-37Pb solder, two mixed solder joints: partial mixing and full mixing between Sn-Pb and Sn-Ag-Cu solders were reached with the peak reflowing temperature of 190 and 250 °C, respectively. During isothermal aging, the intermetallic compound (IMC) layer increased with aging time and its growth was diffusion controlled. There was also no obvious affect from the solder composition on IMC growth. After electromigration with the current density of 2.0 × 103 A/cm2, Sn-37Pb solder joints showed the shortest lifetime with the cracks observed at the cathode for the stressing time < 250 h. In Sn-3.0Ag-0.5Cu Pb-free solder joints, current stressing promoted the growth of IMC layer at the interfaces, but the growing rate of IMC at the anode interface was far faster than that at the cathode interface. Therefore, there existed an obvious polarity effect on IMC growth in Sn-Ag-Cu Pb-free solder joints. After Sn-37Pb was mixed with Sn-3.0Ag-0.5Cu Pb-free solder, whether the partial mixing or the full mixing between Sn-Pb and Sn-Ag-Cu can obviously depress both the crack formation at the cathode side and the IMC growth at the anode.  相似文献   

4.
In this study, direct current (DC) and alternating current (AC) electromigration experiments were carried out using solder joints with a Cu/eutectic Pb-Sn/Cu joint configuration. During stressing using DC and AC, a fixed current density of 104 A/cm2 was applied to the joints at 150°C. In the joints stressed by DC, electromigration-induced damage occurred, and the corresponding microstructural changes mainly included valley and hillock formation in the solder region, pronounced phase segregation of Pb-rich and Sn-rich domains, asymmetric growth of Cu-Sn intermetallics at the interfaces, and excessive depletion of Cu at the cathode side. In contrast, no significant electromigration was observed after the AC treatments. This was especially true for the treatment with AC frequencies higher than 1 h−1. The dependence of the damage on AC frequency suggests that electromigration in solder joints can be inhibited to a large extent when a proper reverse current is delivered.  相似文献   

5.
The microstructural investigation and thermomechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip-chip package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between the solder and Cu mini bump of chip side was Cu6Sn5 intermetallic compound (IMC) layer, while the two phases which were (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were formed between the solder and electroless Ni-P layer of the package side. The cracks occurred at the corner solder joints after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed to be thermally-activated solder fatigue failure. The premature brittle interfacial failure sometimes occurred in the package side, but nearly all of the failed packages showed the occurrence of the typical fatigue cracks. The finite-element analyses were conducted to interpret the failure mechanisms of the packages, and revealed that the cracks were induced by the accumulation of the plastic work and viscoplastic shear strains.  相似文献   

6.
The electromigration of conventional Sn-37Pb and Pb-free Sn-3.0Ag-0.5Cu (in wt.%) solder bumps was investigated with a high current density of 2.5 × 104 A/cm2 at 423 K using flip-chip specimens comprised of an upper Si chip and a lower bismaleimide triazine (BT) substrate. Electromigration failure of the Sn-37Pb and Sn-3.0Ag-0.5Cu solder bumps occurred with complete consumption of electroless Ni immersion Au (ENIG) underbump metallization (UBM) and void formation at the cathode side of the solder bump. Finite element analysis and computational simulations indicated high current crowding of electrons in the patterned Cu on the Si chip side, whereas the solder bumps and Cu line of the BT substrate had a relatively low density of flowing electrons. These findings were confirmed by the experimental results. The electromigration reliability of the Sn-3.0Ag-0.5Cu solder joint was superior to that of Sn-37Pb.  相似文献   

7.
The effect of electromigration (EM) on Sn(Cu)/Ni/Cu solder joint interfaces under current stressing of 104 A/cm2 at 160°C was studied. In the pure Sn/Ni/Cu case, the interfacial compound layer was mainly the Cu6Sn5 compound phase, which suffered serious EM-induced dissolution, eventually resulting in serious Cu-pad consumption. In the Sn-0.7Cu case, a (Cu,Ni)6Sn5 interfacial compound layer formed at the joint interface, which showed a strong resistance to EM-induced dissolution. Thus, there was no serious consumption of the Cu pad under current stressing. In the Sn-3.0Cu case, we believe that the␣massive Cu6Sn5 phase in the solder matrix eased possible EM-induced dissolution at the interfacial compound layer due to current stressing.  相似文献   

8.
In this study, the different electromigration (EM) behaviors of eutectic Sn-Bi solder in the solid and molten states were clarified using line-type Cu/Sn-Bi/Cu solder joints. When the eutectic Sn-Bi solder was in the solid state during the EM test, a Bi-rich layer formed at the anode side while a Sn-rich band formed at the cathode side, and the intermetallic compound (IMC) at the cathode side was thicker than that at the anode side. The growth of the Bi-rich layer exhibited a linear dependence on the time of stressing. While the actual temperature of the solder joint increased to 140°C and the solder was in a molten state or partially molten state, two separate Bi-rich layers formed at the anode side and a great many Cu6Sn5 IMC precipitates formed between the two Bi-rich layers. Also, the IMC layer at the cathode side was thinner than that at the anode side. With a current-crowding-reduced structure, the products of diffusivity and effective charge number of Bi in the eutectic Cu/Sn-Bi/Cu solder joints stressed with current density of 5 × 103 A/cm2 at 35°C, 55°C, and 75°C were calculated.  相似文献   

9.
The phenomenon of electromigration in Pb-free Sn−Ag−Cu solder joint specimens subject to high current density was characterized. Digital image speckle analysis (DISA) was used to measure the in-situ microdeformation and strain of cross-sectioned solder joints, which are subject to electromigration with a current density of 5 × 103 A/cm2 under an ambient temperature of 150°C. After a 120 h electromigration test, a higher strain near large voids was detected near preexisting voids in the solder joints. The current-crowding effect on strain formation was characterized, as it was found that the strain is high near the interface, while in the middle of the solder bump, the strain is low and could be neglected. Nanoindentation markers were used to form dummy voids to study the effect of preexisting voids. The Sn atomic flux and its effect on formation of electromigration strain are discussed.  相似文献   

10.
Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.  相似文献   

11.
Reliability and quality control of microelectronics depend on a detailed understanding of the complex thermomechanical properties of miniaturized lead-free solder joints. With the continuous reduction in size of modern electronic devices, including also the size of the solder joints themselves, mechanical constraint effects may become of importance for the reliability of the joints. In the present study stress relaxation tests in tensile mode were performed on model solder joints consisting of eutectic Sn-3.5Ag solder between Cu substrates. The gap size of the joints was varied between 750 μm and 150 μm in order to investigate the variation of the mechanical properties as a function of the gap size. As it turned out, stress relaxation was dramatically reduced when the solder gaps became smaller due to constraint effects already well known from earlier measurements of the tensile strength. By employing a traditional creep model, the stress exponents and the activation energies were derived and compared with available data in the literature. The consequences of these constraint effects for the case of thermomechanical fatigue are discussed.  相似文献   

12.
The paper presents a hybrid experimental and analytical approach to track the deformation of solder joints in an electronic package subject to a thermal process. The solder joint strain is directly measured using a computer vision technique. The strain measurement is analyzed following an approach that is devised based on an established solder constitutive relation. The analysis leads to the determination of the solder joint stress and in turn, to the separation of the elastic, plastic and creep strain from the measured total strain. The creep strain rate and stress–strain hysteresis loop are also obtained. Two case studies are presented to illustrate the applications and to show the viability of the approach. Each case involves a resistor package with SAC (Sn95.5Ag3.8Cu0.7) solder joints, which is subjected to a temperature variation between ambient and 120 °C. The results confirm that shear is a dominant strain component in such solder joints. The shear strain varies nearly in phase with the temperature whereas the shear stress exhibits a different trend of variation due to stress relaxation. The peak shear stress of around 10 MPa to 15 MPa are found, which occur at near 70 °C in both cases, when the temperature ramps up at approximately 3 °C/min. The creep shear strain goes up to 0.02 and accounts for over 80% of the total shear strain. The creep strain rate is in the order of magnitude of 10−5 s−1. Responding to the temperature cycling with such moderate rate, the creep strain shows modest ratcheting while the stress–strain hysteresis stabilizes in two cycles.  相似文献   

13.
This paper aims to understand the solder bump electromigration phenomenon in the Cu/Sn–3Ag–0.5Cu/Cu system. A temperature of 453 K with a current density of 10 kA/cm2 was applied. A void nucleated at the highest current density point at the cathode. As the void grew along the cathode side, a solder depletion occurred on the opposite side of the electron entry point, resulting in an open failure. A unique purposely-designed 3D model simulation methodology provides a good understanding of the void nucleation and growth behavior. The temperature of the solder joint during the electromigration test was measured successfully by the resistance change in the junction line between the two joints.  相似文献   

14.
Recently, it has been reported that the crystal orientation and grain size of the β-Sn phase in Sn-rich solders have profound effects on the reliabilities of Pb-free solder joints, such as thermo-mechanical fatigue and electromigration. Additionally, it is also known that the microstructure of the Sn-rich solders is strongly affected by their alloy composition. In this study the grain size and orientation of the β-Sn phase were investigated in terms of their alloy composition and interfacial reactions with two different under bump metallurgies (UBMs), Cu and Ni(P). Solder balls (380 μm in diameter) of pure Sn, Sn-0.5Cu, Sn-0.5Ag, and Sn-1.8Ag (in weight percent) were reflowed on Cu and Ni(P) UBMs. After the reflow at 250°C for 120 s, the microstructure of the solder joints was analyzed by cross-polarization light microscopy and electron backscatter diffraction. For the compositional analysis of solder joints, electron probe micro-analysis was used and thermodynamics calculations were also performed. During reflow on Cu or Ni(P) UBM, Cu and Ni atoms were dissolved quickly and were saturated to their solubility limits in the solders, causing changes in composition and β-Sn grain orientation.  相似文献   

15.
We examine electromigration fatigue reliability and morphological patterns of Sn–37Pb and Sn–3Ag–1.5Cu/Sn–3Ag–0.5Cu composite solder bumps in a flip–chip package assembly with Ti/Ni(V)/Cu UBM. The flip–chip test vehicle was subjected to test conditions of five combinations of applied electric currents and ambient temperatures, namely, 0.4 A/150 °C, 0.5 A/150 °C, 0.6 A/125 °C, 0.6 A/135 °C, and 0.6 A/150 °C. The electrothermal coupling analysis was employed to investigate the current crowding effect and maximum temperature in the solder bump in order to correlate with the experimental electromigration reliability using the Black’s equation as a reliability model. From available electromigration reliability models, we also present a comparison between fatigue lives of Sn–37Pb solder bumps with Ti/Ni(V)/Cu and those with Al/Ni(V)/Cu UBM under different current stressing conditions.  相似文献   

16.
The interfacial reaction between Ni and Sn-3Ag-0.5Cu-xPd alloys (x = 0 wt.% to 1 wt.%) at 250°C and the mechanical reliability of the solder joints were investigated in this study. The reaction and the resulting mechanical properties were both strongly dependent on the Pd concentration. When x was low (≤0.2 wt.%), the reaction product at the Ni/Sn-Ag-Cu-xPd interface was a layer of (Cu,Ni)6Sn5. An increase of x to 0.3 wt.% produced one additional (Pd,Ni)Sn4 compound that was discontinuously scattered above the (Cu,Ni)6Sn5. When x was relatively high (0.5 wt.% to 1 wt.%), a dual layer of (Pd,Ni)Sn4-(Cu,Ni)6Sn5 developed with the reaction time. The results of the high-speed ball shear (HSBS) test showed that the mechanical strength of the Ni/Sn-3Ag-0.5Cu-xPd joints degraded with increasing x, especially when x reached a high level of ≥0.3 wt.%. This degradation corresponded to the growth of (Pd,Ni)Sn4 at the interface, and joints easily failed along the boundaries of solder/(Pd,Ni)Sn4 and (Pd,Ni)Sn4/(Cu,Ni)6Sn5 in the HSBS test. The (Pd,Ni)Sn4-induced joint failure (Pd embrittlement) was alleviated by doping the solder with an appropriate amount of Cu. When the Cu concentration increased to 1 wt.% and the Pd concentration did not exceed 0.5 wt.%, the growth of (Pd,Ni)Sn4 could be thoroughly inhibited, thereby avoiding the occurrence of Pd embrittlement in the solder joints.  相似文献   

17.
Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.  相似文献   

18.
This paper aims to investigate the electromigration phenomenon of under-bump-metallization (UBM) and solder bumps of a flip-chip package under high temperature operation life test (HTOL). UBM is a thin film Al/Ni(V)/Cu metal stack of 1.5 μm; while bump material consists of Sn/37Pb, Sn/90Pb, and Sn/95Pb solder. Current densities of 2500 and 5000 A/cm2 and ambient temperatures of 150–160 °C are applied to study their impact on electromigration. It is observed that bump temperature has more significant influence than current density does to bump failures. Owing to its higher melting point characteristics and less content of Sn phase, Sn/95Pb solder bumps are observed to have 13-fold improvement in Mean-Time-To-Failure (MTTF) than that of eutectic Sn/37Pb. Individual bump resistance history is calculated to evaluate UBM/bump degradation. The measured resistance increase is from bumps with electrical current flowing upward into UBM/bump interface (cathode), while bumps having opposite current polarity cause only minor resistance change. The identified failure sites and modes from aforementioned high resistance bumps reveal structural damages at the region of UBM and UBM/bump interface in forms of solder cracking or delamination. Effects of current polarity and crowding are key factors to observed electromigration behavior of flip-chip packages.  相似文献   

19.
The influence of the crystallographic orientation of Sn-3.0 wt%Ag-0.5 wt%Cu flip-chip joints and underfill on electromigration was investigated. The current density applied in our tests was 15 kA/cm2 at 160 °C. Various times to failure of the test samples show a clear dependence of the electromigration behavior on the Sn grain orientations. Different microstructural evolutions were observed in all solder bumps in correlation with the crystallographic orientations of the Sn grains after an electromigration test. The primary failure of the solder joints was caused by dissolution of the Cu electrode at the cathode interface. Rapid dissolution of the Cu electrode occurred when the c-axis of the Sn grains was parallel to the direction of electron flow. On the other hand, slight dissolution of the Cu electrode was observed when the c-axis of the Sn grains was perpendicular to the direction of electron flow. Some grain boundaries interrupt the migration of Cu and the trapped Cu atoms form new grains of intermetallic compounds at the grain boundaries. In addition, underfill inhibits serious deformation of solder bumps during current stressing.  相似文献   

20.
Solder joints with Cu columns appear to be one of the best structures to resist electromigration. Three-dimensional thermoelectrical analysis was employed to simulate the current density and temperature distributions for eutectic SnPb solder bumps with 0.5, 5, 25, 50, and 100 μm Cu under bump metallization (UBM). It was found that the hot spots and current crowding effects in the solder were reduced significantly when the Cu thickness was over 50 μm, whereas the overall Joule heating effect remained almost unchanged. The mechanism by which the Cu column is effective in relieving the hot spot and current crowding effects is to keep the solder away from the heat source and crowding region. Simulated at a current of 0.6 A and 70°C, the estimated mean time to failure of the joints with a 50-μm-thick Cu column was 6.7 times longer than that of joints with a 0.5-μm-thick Cu UBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号