首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compressive stress‐strain properties of unfilled, CaCO3, silica and aluminum silicate filled closed‐cell microcellular ethylene‐octene co‐polymer vulcanizates were studied with variation of blowing agent loading (density). With decrease in density, the compressive stress‐strain curves for microcellular vulcanizates behave differently from those of the solid vulcanizates. The stress‐strain properties are found to be strain rate dependent. The log‐log plots of relative compressive moduli versus relative density of the microcellular vulcanizates show a fairly linear correlation. The energy absorption behavior was also studied from the stress‐strain properties. The efficiency, E, and Ideality parameter, I, were evaluated. These parameters were plotted against stress to find the maximum efficiency and maximum ideality region, which will make these materials suitable for cushioning and packaging applications. The cushioning factor, C, for microcellular vulcanizates has also been evaluated for various systems.  相似文献   

2.
Near-equilibrium stress–strain measurements have been carried out on ternary rubber vulcanizates. The effect of variation of the butyl rubber content on the elastic behaviour of the ternary rubber vulcanizates has been studied. It has been found that butyl rubber (IIR) is less sensitive to the vulcanization system used than either natural rubber (NR) or styrene–butadiene rubber (SBR). One can obtain a partially crosslinked system with an IIR phase embedded in the crosslinked matrix of NR and SBR. The role played by carbon black during mixing of the ternary blend has been investigated. The Mooney–Rivlin relationship was used to describe the behaviour of the ternary rubber matrix. The constants 2C1 and 2C2 have been calculated by use of the strain-amplification factor and the total crosslink density of the ternary rubber–carbon black systems has been investigated. The data have been evaluated in terms of the molecular theories of rubber elasticity. The elastic behaviour was found to be intermediate between the affine and phantom limits of the theory. © of SCI.  相似文献   

3.
The stress–strain (S/S) and the swelling equilibrium behavior in a series of ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) networks were investigated and the results were employed to evaluate the effects of varying the cure conditions on the crosslinking efficiency in these networks. The S/S curve of completely swollen vulcanizates is in agreement with the predictions of rubber elasticity theory, while that of dry or partially swollen vulcanizates is fully described by the Mooney-Rivlin equation. ? values determined in benzene were found to vary linearly with vr (vr = equilibrium volume fraction of rubber in swollen sample). Crosslinking efficiency, moles of crosslinks produced per moles of crosslinking agent used, ranges from 3.7 in peroxide-cured EPDM (55% wt ethylene and 2.6% unsaturation) to 0.15 in similarly cured EPR (43% ethylene). Efficiency in the latter system improves to 0.6 by addition of a coagent (sulfur) to the cure formula. Crosslinking efficiency in EPDM (55% ethylene) was found to increase in the order: peroxide- > resin- > sulfur-cured. In the EPDM sulfur vulcanizates, changing the terpolymer in the cure formula resulted in significant changes in the crosslinking efficiency.  相似文献   

4.
The dynamic shear behavior of SBR 1500 vulcanizates filled with polymeric fillers of 24.6, 40.2, and 74.7 nm diameter and various filler loading up to 100 phr (parts per 100 parts of rubber), and its dependence of strain amplitude up to 14%, have been investigated. The results are compared with carbon-black-filled vulcanizates. The reinforcement ability of polymeric fillers is comparable to that of carbon black, depending on filler particle diameter. As expected, the smaller particles have a higher reinforcement effect than larger particles. The Payne effect, that is, the decrease of storage shear modulus G′ with increasing strain amplitude and the appearance of a loss modulus G″ maximum at strains of a few percent, has also been observed in vulcanizates with polymeric fillers. The loss modulus maximum of vulcanizates filled with polymeric fillers is at higher strain amplitudes and is less pronounced than for carbon-black-filled vulcanizates. The results are discussed shortly in terms of recent models based on the idea of filler networking within the rubbery matrix. The experimental G′ data are adjusted with the deagglomeration–reagglomeration Kraus model (1984). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 495–503, 1999  相似文献   

5.
Modification of acrylonitrile in copolymerizations with butadiene and with styrene in hot and cold emulsion recipes has been studied. Series of primary, secondary, and tertiary mercaptans in addition to several miscellaneous modifiers were tested. Kinetically the rate data for the monomer pairs containing acrylonitrile better fit first-order plots than the curves obtained for an ideal emulsion polymerization. In this study all modifier depletions in nitrile systems were plotted as log mercaptan versus log conversion and the slope of the curve was taken as the transfer constant. Normal mercaptans were inefficient modifiers in nitrile systems as determined in polymerization and depletion experiments. Secondary mercaptans, 2-nonyl, 2-decyl, and mixtures in this molecular weight range, were promising modifiers for low temperature (5°C.) nitrile systems. 2-Nonyl mercaptan gave enhanced modification by incremental addition of the modifier indicating this procedure could be used to advantage in preparing nitrile rubbers. The series of tertiary mercaptans from C13 to C7 showed an improvement in modification of low temperature nitrile systems as the molecular weight decreased. A plot of the data on a molar basis shows that the optimum modifier falls in the C9–C8 range. The optimum transfer constant for the most efficient modification of 70/30 and of 80/20 butadiene–acrylonitrile polymerizations at 5°C. terminated at 60% conversion is 2. Depletion data show that the transfer constant for a mercaptan decreases as the nitrile content in mixtures with butadiene increases. The properties of the vulcanizates of the 70/30 and 80/20 butadiene–acrylonitrile polymers prepared in the presence of low molecular weight mercaptans were equivalent to or better than those of the controls. These data show that nitrile polymers could be modified with a lower molecule weight mercaptan with no loss of properties but with a considerable saving in amount of modifier. Mercaptans are essential for the initiation of butadiene–acrylonitrile in the presence of persulfate at 50°C. For the hot nitrile rubber preparations, the series of mercaptan from t-C10 to t-C7 are efficient modifiers. However, the heptyl and octyl mercaptans are retarders, and the t-C9 and t-C10 are the preferred modifiers for efficiency and unretarded polymerization. The modification with a series of mercaptans ranging from t-C13.2 to t-C8 of 75/25 styreneacrylonitrile at 50°C. in presence of persulfate–bisulfite showed a consistent behavior. The transfer constant decreased in a regular manner as the molecular weight of the mercaptan increased, and for the series of tertiary modifiers the t-C10 mercaptan was the most efficient as judged by a melt flow test.  相似文献   

6.
Large variations in the microstructure of 1,4-polyisoprenes, from ca. 100% cis-trialkylethylene groups, as in natural rubber (NR), to ca. 40% cis- and 60% trans-trialkylethylene groups, as in an equilibrium-isomerized NR, have little influence on the overall chemistry of vulcanization of the polyisoprenes by a N-cyclohexylbenzothiazole-2-sulfenamide-accelerated sulfur system or by a dicumyl peroxide system. The peroxide crosslinks the equilibrium-isomerized NR more efficiently than it crosslinks NR; this is attributed to the sulfur dioxide, which is used to isomerize the NR, scavenging some of the nonrubber constituents in the NR, which are known to compete with the rubber hydrocarbon for reaction with free radicals from the peroxide. By comparison with NR vulcanizates, the corresponding equilibrium-isomerized NR vulcanizates have higher values of the C2 term of the Mooney-Rivlin stress–strain equation and higher χ (polymer–swelling liquid interaction parameter) values of the Flory-Huggins equation.  相似文献   

7.
Through the neutralization of magnesium oxide (MgO) and methacrylic acid (MAA), magnesium methacrylate [Mg(MAA)2] was in situ prepared in styrene–butadiene rubber (SBR) and used to reinforce the SBR vulcanizates cured by dicumyl peroxide (DCP). The experimental results show that the mechanical properties, dynamic mechanical properties, optical properties, and crosslink structure of the Mg(MAA)2‐reinforced SBR vulcanizates depend on the DCP content, Mg(MAA)2 content, and the mole ratio of MgO/MAA. The formulation containing DCP 0.6–0.9 phr, Mg(MAA)2 30–40 phr, and MgO/MAA mole ratio 0.50–0.75 is recommended for good mechanical properties of the SBR vulcanizates. The tensile strength of the SBR vulcanizates is up to 31.4 MPa when the DCP content is 0.6 phr and the Mg(MAA)2 content is 30 phr. The SBR vulcanizate have good aging resistance and limited retention of tensile strength at 100°C. The SBR vulcanizates are semitransparent, and have a good combination of high hardness, high tensile strength, and elongation at break. The Tg values of the SBR vulcanizates depend largely on the DCP content, but depend less on the Mg(MAA)2 content and the MgO/MAA mole ratio. The contents of DCP, Mg(MAA)2, and the MgO/MAA mole ratio have also great effects on the E′ values of the vulcanizates. The salt crosslink density is greatly affected by the Mg(MAA)2 content and MgO/MAA mole ratio, but less affected by the DCP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2667–2676, 2002  相似文献   

8.
An experimental study of the rheological behavior of ethylene–octene copolymer vulcanizates in extrusion containing blowing agent has been carried out. The cell morphology development has been studied through a scanning electron microscope. Rheological properties of unfilled and precipitated silica‐filled systems with variations of blowing agent, extrusion temperature, and shear rate have been studied by using a Monsanto processibility tester (MPT). The total extrusion pressure (PT), apparent shear stress (τwa), apparent viscosity (ηa), and die swell (%) of the unfilled and silica‐filled compounds have been determined by using MPT. The effect of blowing agent (ADC) on the rheological properties of the vulcanizates has also been investigated. There is a reduction of stress and viscosity with blowing agent loading. It was observed that the incorporation of a blowing agent led to decreased shear thinning behavior resulting in an increase in power law index. The viscosity reduction factor (VRF) of unfilled vulcanizates is found to be dependent on the concentration of the blowing agent, shear rate, and temperature, whereas VRF of silica‐filled vulcanizates is found to be dependent on shear rate, temperature, and blowing agent concentration. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1132–1138, 2003  相似文献   

9.
The polyurethane networks based on commerical prepolymer, Adiprene L-100, and trimethylol propane (system 1) and on toluene diisocyanate, polypropylene gylcol, and trimethylol propane (system 2) were prepared and characterized in a number of ways. The materials constitute the first formed networks in a series of interpenetrating polymer networks and semi-interpenetrating polymer networks to be reported in subsequent papers in this series. System 1 networks were characterized by swelling tests which showed the M c values to be sensitive to the amount of polyurethane present in the polymerization solvent. Stress–strain, stress–relaxation, and dynamic mechanical analyses wer also conducted. For system 2, M c was measured, by both the swelling and the Mooney–Rivlin techniques, for materials in which the diol-to-triol ratios had been altered. the latter showed C1 increasing as M c decreased while C2 was small and changed onlyy slightly indicating approximately ideal behavior. These M c values were about 13 % larger than predicted by swelling.  相似文献   

10.
The reinforcement effect of carbon black and, the effect of accelerator-to-sulfur ratio variation on the elastic behavior of natural rubber vulcanizates have been studied. The Mooney–Rivlin relation was used to describe the behavior of the rubber matrix, and values of constants c1 and c2 have been evaluated with the use of the strain-amplification factor. The stress softening of the vulcanizates tested has also been examined.  相似文献   

11.
Blending of hydroxyl-terminated liquid butadiene rubber (HT-BR) with 1-chlorobutadiene–butadiene rubber (CB–BR) was carried out in the presence of isopropylidenedicyclohexyl diisocianate (IPCI) or sulfur as a curing agent, It was found that the HT-BR/CB–BR blend displayed a good plasticity, i.e., its Mooney viscosity became lower than that of CB–BR, which brought abcut a good processability. The HT-BR fraction (Es from the HT-BR/CB–BR blend vulcanizates, which was prepared by the IPCI-cured system, was evaluated to be ca. 20% by the equilibium swelling test in benzene. The Es of the sulfur-cured blend was ca. 70% This result shows that HT-BR acted as a reactive softener when it was compounded with CB–BR by curing with the diisocyanate. The tensile strength of the IPCI vulcanizate was exceedingly higher than that of sulfur-cured vulcanizate at all blend raios of HT-BR to CB–BR. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Abstract

Comparison studies on effects of feldspar and silica (Vulcasil C) as a filler in (SMR L grade natural rubber) vulcanizates on curing characteristics, mechanical properties, swelling behavior, thermal analysis, and morphology were examined. The incorporation of both fillers increases the scorch time, t 2, and cure time, t 90, of SMR L vulcanizates. At a similar filler loading, feldspar exhibited longer t 2 and t 90 but lower values of maximum torque, MHR, and torque difference, MHR–ML than did silica-filled SMR L vulcanizates. For mechanical properties, both fillers were found to be effective in enhancing the tensile strength (up to 10 phr), tensile modulus, and hardness of the vulcanizates. However, feldspar-filled SMR L vulcanizates showed lower values of mechanical properties than did silica-filled SMR L vulcanizates. Swelling measurement indicates that swelling percentages of both fillers-filled SMR L vulcanizates decrease with increasing filler loading whereas silica shows a lower swelling percentage than feldspar-filled SMR L vulcanizates. Scanning electron microscopy (SEM) on fracture surface of tensile samples showed poor filler–matrix adhesion for both fillers with increasing filler loading in the vulcanizates. However, feldspar-filled SMR L vulcanizates showed poorer filler–matrix adhesion than did silica-filled SMR L vulcanizates. Thermogravimetric analysis (TGA) results indicate that the feldspar-filled SMR L vulcanizates have higher thermal stability than do silica-filled SMR L vulcanizates.  相似文献   

13.
Microcrystalline cellulose (MCC) was hybridized with nano‐SiO2 to improve its interaction with a rubber matrix. The hybrids (MCC–SiO2) were prepared with the “microreactor” and “sol–gel” technologies, using MCC as the carrier and tetraethoxysilane as the precursor. The structure and morphology of the hybrids were studied by infrared spectrometry, thermogravimetric analysis, and scanning electron microscopy. The results showed that the nano‐SiO2 had been loaded successfully on the surface of the MCC with a loading ratio of approximately 30%. The nano‐SiO2 can take on the morphologies of particles, tubes, or rods by controlling the size of the “microreactor”. The hybrids were then used in silica/SSBR compounds to replace part of the silica, and their effects on the physio‐mechanical and dynamic properties were discussed. The results showed that the vulcanizates with the hybrids had improved physio‐mechanical and dynamic properties. The vulcanizates of MCC–SiO2 also had a higher wet‐skid resistance and a lower rolling resistance than did the silica vulcanizates when they were used in tire tread compounds. The SEM photos showed that the interfacial adhesion between the MCC and rubber was improved. The size of the MCC hybrids was also in situ decreased during the processing of the rubber compounds. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44796.  相似文献   

14.
In the electric–thermal equilibrium state the current–voltage (I–V) characteristics of conductive silicone rubbers above the percolation threshold are found to be nonlinear. A mathematic model as I = a1U ± (a2U2 + C) has been built for the nonlinear I–V relations. Constant C and quadratic term a2U2 can be considered as deviation from Ohm's law. For the first time, a correlation is found for conductive silicone rubber between the I–V characteristic in the electric–thermal equilibrium state and the resistivity–temperature characteristic. Samples with positive temperature coefficient (PTC) resistivity effect exhibit negative deviation from linearity, with an I–V relation as I = a1U ? (a2U2 + C). Samples with negative temperature coefficient (NTC) resistivity effect exhibit positive deviation, with an I–V relation as I = a1U + (a2U2 + C). The higher the loaded voltage, the more pronounced the deviation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
To understand the potential for use of the Hf–Al–C ternary compounds, (HfC)nAl3C2 (Hf2Al3C4 and Hf3Al3C5) and (HfC)nAl4C3 (Hf2Al4C5 and Hf3Al4C6) were investigated using density functional theory, including crystal structure, electronic structure, compressibility, and elastic properties. The theoretical density of (HfC)nAl3C2 (4.10–4.16 g/cm3) is higher than that of (HfC)nAl4C3 (3.92–3.98 g/cm3), due to the smaller number of lighter Al–C layers. With increasing numbers of Hf–C layers, the Hf–C and Al–C bond lengths remain almost unchanged. In none of the compounds is there a gap around the Fermi energy (Ef), which implies they are metal‐like conductors. With increasing pressure, there is greater shrinkage along the c axis than the a axis. The bond stiffness increases with increasing pressure. In general, (HfC)nAl3C2 has higher elastic stiffness than (HfC)nAl4C3, with the moduli increasing with the number of Hf–C layers. The Hf–Al–C compounds as well as the brittle Zr–Al–C compounds all have low shear moduli/bulk moduli ratio (G/B) from 0.71 to 0.78, suggesting that the G/B ratio is not always a suitable measure of ductility.  相似文献   

16.
Relaxor ferroelectrics (0.94 ? x)(Bi0.5Na0.5)TiO3–0.06BaTiO3?x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT) (0 ≤ x ≤ 0.5), were prepared by a solid‐state reaction process, and their structures were characterized by the transmission electron microscopy and Raman spectroscopy. The BNT–BT–0.3SBT has a very high electrostrictive strain S = 0.152% with hysteresis‐free behavior, much more than the reported S in other ferroelectrics. SP2 profiles perfectly follow the quadratic relation, which indicates a purely electrostrictive effect with a high electrostrictive coefficient (Q11) of 0.0297 m4/C2. Even, its Q11 keeps at a high level in the temperature range from ambient temperature to 180°C. The field‐induced large electrostrictive strain of BNT–BT–0.3SBT was attributed to the existence of ferroelectric nanodomains.  相似文献   

17.
An improved stress–strain (S/S) method based on rubber elasticity theory and swelling equilibrium measurements was used to investigate the S/S behavior and the solvent swelling properties of nitrile–butadiene rubber (NBR) and also to study the effects of varying the cure agent and the curing conditions on the crosslinking efficiency in NBR vulcanizates. The S/S curve of completely swollen NBR vulcanizates is, as expected, in agreement with rubber elasticity theory, while that of dry or partially swollen vulcanizates is well described by the Mooney-Rivlin equation. Determined in benzene, χ was 0.494, compared to 1.338 in cyclohexane and 2.124 in n-heptane. The degree of crosslinking and the crosslinking efficiency in the NBR vulcanizates, moles of crosslinks produced per mole of crosslinking agent employed in the formula, are largely dependent on the nature of the crosslinking agent used and increase in the following order: peroxide, sulfur tetramethylthiuram disulfide, sulfur N-cyclohexyl-2-benzothiazolesulfenamide, sulfur benzothiazyl disulfide, and finally tetramethylthiuram disulfide.  相似文献   

18.
Natural rubber–silica [W(NR–SiO2)] composites were prepared by wet‐compounding technology with liquid natural rubber (LNR) as a compatibilizer. The effects of the LNR content and wet‐compounding technology on the filler dispersion, Payne effect, curing characteristics, mechanical properties, and interfacial interactions were investigated. The results show that the incorporation of LNR promoted vulcanization and decreased the Payne effect of the W(NR–SiO2) composites. With the addition of 5 phr LNR, the remarkable improvements in the mechanical properties of the W(NR–SiO2) vulcanizates were correlated with the improved silica dispersion and strengthened interfacial bonding. Furthermore, the W(NR–SiO2) vulcanizates containing LNR exhibited improvements in both the wet‐skid resistance and rolling‐resistance performance. The interfacial interactions, quantitatively evaluated by the Mooney–Rivlin equation and Lorenz–Park equation on the basis of the rubber elasticity and reinforcement theory, were strengthened in the presence of LNR. Accordingly, an interfacial structural model was proposed to illustrate the improvements in the mechanical properties of the W(NR–SiO2) composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46457.  相似文献   

19.
Gas–liquid chromatography is used to study the thermodynamic interactions between polystyrene and n‐alkanes (C6–C10). Polystyrene is used as a stationary phase with n‐alkanes as the probe molecules. Retention times and specific retention volumes are measured over the temperature interval of 60 to 170°C. Partial molar free energy of mixing, polymer–solvent interaction parameter, glass‐transition temperature, and solubility parameter of polystyrene at infinite dilution are calculated. Experimental results are discussed in terms of the theoretical calculations and size of the probe molecules. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1291–1298, 2001  相似文献   

20.
The viscoelasticity and stress‐softening behavior of chloroprene rubber (CR) filled with multiwalled carbon nanotubes (MWCNT) and carboxylated multiwalled carbon nanotubes (MWCNT‐COOH) were studied using a Rubber Process Analyzer 2000 (RPA2000). In the strain sweep measurements, it is found that CR/MWCNT and CR/MWCNT‐COOH compounds have different behavior on storage modulus (G′). With increasing strain, G′ of CR/MWCNT (100/8) compound decreases at strain less than 2°, while G′ of CR/MWCNT‐COOH (100/8) compound stays at constant, indicating that MWCNT‐COOH has stronger filler–filler network and filler–rubber interactions as compared to MWCNT in CR matrix. CR/MWCNT (MWCNT‐COOH) vulcanizates have higher G′ but lower loss modulus (G″) than the corresponding uncured compounds. Repeated strain sweep scans were carried out to study the stress‐softening behavior of CR compounds. A stress‐softening effect of the filled CR compounds is observed and becomes more pronounced with increasing loading of MWCNT or MWCNT‐COOH. The correlation between the Payne effect and stress‐softening effect of CR/MWCNT (MWCNT‐COOH) vulcanizates is also studied. It is found that the difference of the storage moduli at 0.1° and 10° strain amplitudes and the difference of storage moduli of first and second strain sweeps at 0.1° strain amplitude show a positive linear correlation. POLYM. COMPOS., 35:2194–2202, 2014. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号