首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni/carbon nanotube (Ni/CNTs) composite coatings were deposited on carbon steel plate by electroless deposition. The friction and wear properties were examined under dry sliding conditions using the ball-on-disk configuration. For reference, carbon steel plate was coated with Ni, Ni/SiC and Ni/graphite. The results show that the Ni/CNT coating has a microhardness value of 865 Hv, greater than for SiC reinforced composite deposits. The Ni/CNTs composite coating possesses not only a higher wear resistance but also a lower friction coefficient, resulting from their improved mechanical characteristics and the unique topological structure of the hollow nanotubes.  相似文献   

2.
Peng LM  Shi ZJ  Zhang ZL  Ouyang L  Gu ZN  Xue ZQ  Wu QD 《Ultramicroscopy》2004,98(2-4):195-200
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are complement to each other in many of their physical properties. We report the synthesis of carbon nanotube cables-a form of compound single- and multi-walled carbon nanotubes which could have the superior properties of both the SWCNTs and MWCNTs. This compound form of carbon nanotubes consists of a bundle of SWCNTs formed into a MWCNT, and the diameter of the inner most shell of the MWCNT ranges from a few to tens nanometers. The growth of these compound carbon nanotubes cannot be explained readily via existing modes of carbon nanotube growth, but promises a new way for improving and controlling the physical properties of either single- or multi-walled carbon nanotubes.  相似文献   

3.
The method for imaging of highly sensitive nanostructures unstable under electron beam irradiation is introduced. To reduce charge and thermally generated beam damage, highly conductive multilayered graphene or thin graphite layers were used as supports for nanostructures. Well‐defined crystalline structure of graphite layers enables image reconstruction by Fourier filtering and allows maintaining high quality of images. The approach was tested for imaging of highly sensitive quasi one‐dimensional SnTe nanocrystals hosted inside single‐walled carbon nanotubes. Relying on the filtered images and the image simulation, the structure of one‐dimensional SnTe was established as a chain of fcc NaCl type unit cells, connected by the [001] edges with <110> direction coinciding with nanotube axis.  相似文献   

4.
Vertically aligned carbon nanotube (CNT) arrays were directly grown onto 440C stainless steel substrates by plasma-enhanced chemical vapor deposition. Tribological properties of both short and long CNTs samples were studied under normal loads of 10 g, 25 g and 100 g. The CNTs had a steady-state friction coefficient of about 0.2 in humid air. In dry nitrogen, a friction of 0.2 was measured under a load of 10 g while high friction was measured at 25 g and 100 g loads. No significant variation of tribological behavior was measured between the short and long CNTs samples. SEM observations showed that rubbing caused the CNTs to align or lay down along the wear scar. They formed aggregates and were compressed by rubbing, which resulted in layer-structured graphite formations. SEM observation of the wear scars revealed loss of CNT structures accompanied by the appearance of dark areas. Micro Raman spectroscopic studies demonstrated that the dark areas were graphitized CNTs. Shear stress aligned the basal planes of the small graphene sheets in the CNT layers to the low friction orientation and eventually caused formation of more ordered graphite. The tribological formation of interfacial carbon layers increased with increasing stress from higher loads.  相似文献   

5.
Morphological, thermal, mechanical, and solvent uptake was characterized for neat nylon 6, 6 and functionalized single-walled carbon nanotube/nylon 6, 6. Single-walled carbon nanotubes were functionalized by acid which introduced carboxyl groups on the nanotubes. Scanning electron micrographs of the fractured surfaces of the nanocomposites suggested that the functionalized single-walled carbon nanotubes were dispersed and embedded within the nylon 6, 6 polymer matrix. Polarized optical micrographs showed that the size of spherulites of the nanocomposites decreased, which may be due to nucleation of the carbon nanotubes. Thermogravimetric analysis showed that the stability of the functionalized single-walled carbon nanotubes/nylon 6, 6 nanocomposites was higher by 28–35°C than neat nylon 6, 6. The uptake of solvent by the functionalized single-walled carbon nanotube/nylon 6, 6 was lower than the neat nylon 6, 6, which may be due to the hydrophobic nature of functionalized single-walled carbon nanotubes and their interaction with the polymer.  相似文献   

6.
Feng YT  Deng SZ  Chen J  Xu NS 《Ultramicroscopy》2003,95(1-4):93-97
Experimental studies were devoted to the effect of structural parameters, i.e., tube diameter and density, on the field electron emission characteristics of carbon nanotubes. Thermal chemical vapor deposition system was employed to synthesize carbon nanotubes. Nanotubes with different diameters and densities were obtained by adjusting the thickness of the iron (Fe) catalyst film. The morphologies of the Fe and carbon nanotube film were characterized by scanning electron microscopy respectively. Further field emission measurement confirmed that the tube diameter and density could significantly affect the electron emission properties of the carbon nanotube. Possible physical reasons for the effect are discussed.  相似文献   

7.
The effect of reaction temperature on the formation of a carbon layer on the surface of SiC has been investigated. Subsequently, the tribological properties of the formed carbon layers were studied. The experimental procedure involved exposing reaction-bonded SiC balls to a flowing gas mixture of 5% Cl2, 2.5% H2, and Ar at a high temperature of 800, 1000, or 1200 °C. A ball-on disk tribometer was used to investigate the friction and wear behavior of the treated specimens. While partially unreacted SiC phases were observed in the layer modified at 800 °C, rhombohedral graphite crystals were formed in the layer modified at 1200 °C. Compared to untreated SiC, the treated SiC materials were found to have relatively low friction coefficients and better wear resistance. Increasing the treatment temperature was found to improve the tribological performance of the resulting surface-modified SiC balls. A possible reason for this tribological improvement has been discussed based on the observed carbon phases.  相似文献   

8.
Nakayama Y 《Ultramicroscopy》2002,91(1-4):49-56
We have developed well-controlled processes for the growth and manipulation of carbon nanotubes. The relatively thin multiwalled nanotubes were prepared with high purity by arc discharge with a high gas temperature. In the manipulation of nanotubes, the first crucial process is to prepare a nanotube array, so-called nanotube cartridge. We have found the alternated current electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge of a disposal razor. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope. Using this method, we have developed nanotube probes and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have been demonstrated for their motion in scanning electron microscope and operated to carry a nanomaterial in a SPM.  相似文献   

9.
核主泵备用机械密封材料的摩擦性能研究   总被引:1,自引:0,他引:1  
采用Falex-1506摩擦磨损试验机,研究了水润滑、室温条件下,载荷和速度对核主泵用机械密封材料:无压烧结碳化硅(WNV2)和碳化硅加碳(CHV1)、反应烧结碳化硅(R)和碳化硅加碳(R2)、石墨(MSMG)在不同配副条件下摩擦学特性的影响规律。使用扫描电镜(SEM),对磨损表面进行了观察和分析。研究结果表明,碳化硅和石墨材料自身的孔隙,在高载荷下容纳了更多的润滑流体,因此,不同配副条件下的摩擦系数均随载荷的增加而减小。另外,滑动速度引起的温度改变通过影响表面层性质影响摩擦力,而碳化硅和石墨在很宽的温度范围内机械性质保持不变,所以摩擦系数随速度的增加基本不变。  相似文献   

10.
Frictional anisotropy of oriented carbon nanotube surfaces   总被引:1,自引:0,他引:1  
This report examines highly anisotropic tribological behavior of multi-walled nanotube films oriented in mutually orthogonal directions. The average values of coefficient of friction varied from extremely high values (=0.795) for vertically aligned nanotubes grown on rigid substrates to very low values (=0.090) for nanotubes dispersed flat on the same substrates. The results were insensitive to humidity, in contrast to graphite materials, and indicate that nanotubes could be utilized as both low and high frictional surfaces.  相似文献   

11.
研究了大变形量下高碳钢环件冷轧变形行为,利用有限元模拟方法分析了环件冷轧过程中的形变规律,采用光学显微镜、SEM等材料表征手段研究了大变形量下环件冷轧过程中的组织演化特点。结果表明:在较小的变形量下,环件内外侧应变较中间应变大,且变形首先发生在环件外侧;整个环件变形过程中,环件中间层的晶粒变形程度最小,外层次之,内层的变形最为剧烈;铁素体基体沿轧制方向呈现明显的方向性,碳化物颗粒分布更为均匀,且数量变少;随着变形量的增大,环件内层的应变明显大于外层的应变,且最小应变的位置偏移至靠外层比较近的区域,其组织中碳化物颗粒脱落加重;当变形量达到625%时,环件达到塑性极限,在内侧表面产生裂纹发生破坏。  相似文献   

12.
李瑞  胡元中  王慧 《润滑与密封》2007,32(11):15-17,77
采用分子动力学模拟方法研究了常温300 K时,公度、不公度情况下,单壁碳纳米管CNT(10,10)在石墨基底上的运动、摩擦行为。计算中首先使碳纳米管在基底上弛豫平衡,而后施加持续时间500 fs的固定外力,撤去外力后碳纳米管在基底上减速至相对基底静止。结果表明,碳纳米管在石墨基底上不同的放置位置决定了它与基底接触面的微观构型,从而决定了碳纳米管的运动、摩擦规律。公度时,碳纳米管先在基底上滑动,摩擦力、平动能均呈现周期性起伏,之后碳纳米管在基底上滚动、滑动、翻转,滑动、转动之间运动形式的转变提高了能量耗散,增大了摩擦力,非公度时摩擦力约为公度时的70%。非公度时碳纳米管一直在基底上滑动,平动能和摩擦力不具有周期性。  相似文献   

13.
The tribological properties of highly disordered graphitic carbon layers formed on silicon carbide (SiC) substrates by reaction with chlorine and chlorine-hydrogen gas mixtures at 1000 °C were studied. Si was selectively removed from the near surface of SiC by chlorine gas, leaving behind a layer of carbon having high structural density and strong bonding characteristics. Tribological tests showed that the carbon films were highly adherent and able to reduce friction coefficients of the base SiC by factors of up to seven. There was little or no change in the factional behavior of carbon layers when sliding velocity and load were increased. Low friction coefficients (~0.1) could be obtained under wet, dry, polished, and rough conditions. The initially rough carbon surface underwent plastic flow producing a smooth, self-adjusting carbon layer. Structural morphology and the amount of disorder in the carbon layers were correlated with the friction and wear performance of the resultant films.  相似文献   

14.
G. Zambelli  A.V. Levy 《Wear》1981,68(3):305-331
The erosion behavior of brittle oxide scales on ductile alloy substrates is not well known. The oxidation of commercially pure nickel in an air furnace at 1000°C produces relatively thick NiO scales which provide a base for an investigation of the erosion behavior of scales of more complex alloys. The NiO scales formed consisted of two distinct layers, a columnar outer layer and a fine-grained porous inner layer. The erosion testing was conducted at room temperature using an air blast tester. Angular SiC particles were used at velocities Vp of 100 and 30 m s?1, and at impingement angles α of 20° and 90°.Erosion damage of the NiO scales was observed and interpreted using simplified postulates based on fracture propagation concepts. The NiO duplex scale is removed in a two-step mechanism. Plastic flow indentation and lateral crack growth in the columnar outer layer is the first step in the erosion mechanism. In the second step, pits are produced from hertzian cone fractures formed in the inner layer. The oxide is removed by the chipping away of the cracked scale of the outer and inner layers, which enlarges the pits. At greater velocities, particle sizes and impingement angles the erosion of the thinner oxide scales to the bare nickel occurred in times of the order of seconds. It was observed that the strengths of the bonds between the two scale layers and between the scale and the metal substrate were directly related to the erosion behavior. NiO scales thicker than 50μm introduced some protection during the initial period of erosion of the outer scale. The microstructure, mechanical properties and bonding state of the oxide layers are important parameters in the erosion behavior of oxide scales.  相似文献   

15.
A sapphire convex surface was loaded against a reciprocating flat SiC counterface material. In this particular study the chemical nature of the wear surfaces and associated features such as the wear debris and local areas of material transfer have been studied using analytical techniques such as EDX, XPS and AES. Prior to wear tests the SiC substrate is covered with a thin (1–2 nm) layer of SiO2. During wear the thickness of this layer is substantially reduced, and wear debris of a cylindrical morphology is produced. Examination of the outer 1–2 μm of the wear debris, as well as the first few atomic layers, by EDX and AES, respectively, showed very similar results in areas rich in oxygen accompanied by varying quantities of Al and Si but litte carbon. It is proposed that the wear debris is initially produced by the fragmentation of asperities on the two wear surfaces followed by the transfer of a wear film of SiO2. Such equiaxed debris is then agglomerated into a characteristic cylindrical particle that lies normal to the reciprocating motion.  相似文献   

16.
A life-size composite brake disc was produced from Si, carbon–carbon composite, copper, and phenol resin. The disc had an outer radius Ø380, inner radius Ø180, and thickness of 36 mm. Chopped carbon fibers were used to reinforce frictional and structural layers. To obtain a preform of each layer, resin and carbon-fibers were mixed and hot-pressed. The preforms were pyrolyzed, and bonded by hot pressing. Finally Si and Cu infiltration in vacuum atmosphere was carried out to obtain a C/C–SiC–Cu x Si y composite brake disc. The density of the disc was 2.17 g/cm3. The bending strength was 61 MPa. The heat transfer coefficients in vertical and horizontal directions were 30.7, and 85.2 W/m-°C at 25°C, respectively. Friction coefficients of the C/C–SiC–Cu x Si y brake disc were more stable than those of C/C–SiC brake discs. X-ray diffraction analysis showed that Cu formed a compound, Cu3Si.  相似文献   

17.
碳纳米管/环氧树脂复合材料研究   总被引:3,自引:0,他引:3  
将碳纳米管加入到环氧树脂中,经超声分散处理制得复合材料。研究了碳纳米管的加入量与分散程度对材料抗拉强度的影响。研究表明:碳纳米管的加入量小于3%时可有效提高复合材料的抗拉强度,加入量为1.7%,抗拉强度达到最高值52.38MPa,比纯环氧树脂(26.40MPa)提高98.4%。  相似文献   

18.
双金属复合管液压成形压力的计算   总被引:1,自引:0,他引:1  
根据基本假设,建立双金属复合管的材料模型及力学模型。采用弹塑性理论,分析双金属复合管液压成形过程中内管及外管的应力应变状态。利用变形协调条件,得出液压力Pi与复合管内外管之间残余接触压力Pe^*的计算公式,给出液压成型压力的最大值与最小值,并通过试验验证理论公式的准确性。双金属复合管复合成形时要想获得残余接触压力,外层管材料屈服强度必须大于内层管材料屈服强度或强化后的应力值。  相似文献   

19.
The axial and torsional wave propagation in a double-walled carbon nanotube (DWCNT) embedded on elastic foundations are investigated using nonlocal continuum shell theory. The effects of the surrounding elastic medium are considered using the spring constant of the Winkler-type and the shear constant of the Pasternak-type. The van der Waals (vdW) forces between the inner and the outer nanotubes are taken into account. The dynamic response of the carbon nanotube is formulated on the basis of nonlocal elasticity shell theory. The cut-off frequencies are obtained and it has been concluded that the cut-off frequencies are independent of small scale coefficient and shear modulus of the elastic medium. It has been found that the phase velocity sharply decreases by increasing the axial half wave number and approaches a constant value. It has also been concluded that the maximum phase velocity predicted by nonlocal theory is located between 5 and 10 nanometers while for local theories the phase velocity sharply decreases in this interval and approaches a constant value. Results show that the effect of Pasternak-type on phase velocity is significant but the effect of Winkler-type is not really considerable.  相似文献   

20.
An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25°C using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 μm. The results of the investigation indicate that the SiC {0001} surface could be deformed, in a plastic manner during cavitation. Dislocation etch pits ware formed when the surface was chemically etched. The number of defects, including dislocations in the SiC {0001} surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated during cavitation. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号