共查询到20条相似文献,搜索用时 15 毫秒
1.
Christian Borgelt 《Information Sciences》2009,179(23):3985-47
This paper extends earlier work [C. Borgelt, R. Kruse, Speeding up fuzzy clustering with neural network techniques, in: Proceedings of the 12th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’03, St. Louis, MO, USA), IEEE Press, Piscataway, NJ, USA, 2003] on an approach to accelerate fuzzy clustering by transferring methods that were originally developed to speed up the training process of (artificial) neural networks. The core idea is to consider the difference between two consecutive steps of the alternating optimization scheme of fuzzy clustering as providing a gradient. This “gradient” may then be modified in the same way as a gradient is modified in error backpropagation in order to enhance the training. Even though these modifications are, in principle, directly applicable, carefully checking and bounding the update steps can improve the performance and can make the procedure more robust. In addition, this paper provides a new and much more detailed experimental evaluation that is based on fuzzy cluster comparison measures [C. Borgelt, Resampling for fuzzy clustering, Int. J. Uncertainty, Fuzziness Knowledge-based Syst. 15 (5) (2007), 595-614], which can be used nicely to study the convergence speed. 相似文献
2.
Clustering algorithms are increasingly employed for the categorization of image databases, in order to provide users with database overviews and make their access more effective. By including information provided by the user, the categorization process can produce results that come closer to user's expectations. To make such a semi-supervised categorization approach acceptable for the user, this information must be of a very simple nature and the amount of information the user is required to provide must be minimized. We propose here an effective semi-supervised clustering algorithm, active fuzzy constrained clustering (AFCC), that minimizes a competitive agglomeration cost function with fuzzy terms corresponding to pairwise constraints provided by the user. In order to minimize the amount of constraints required, we define an active mechanism for the selection of candidate constraints. The comparisons performed on a simple benchmark and on a ground truth image database show that with AFCC the results of clustering can be significantly improved with few constraints, making this semi-supervised approach an attractive alternative in the categorization of image databases. 相似文献
3.
Hierarchical unsupervised fuzzy clustering 总被引:5,自引:0,他引:5
A recursive algorithm for hierarchical fuzzy partitioning is presented. The algorithm has the advantages of hierarchical clustering, while maintaining fuzzy clustering rules. Each pattern can have a nonzero membership in more than one subset of the data in the hierarchy. Optimal feature extraction and reduction is optionally reapplied for each subset. Combining hierarchical and fuzzy concepts is suggested as a natural feasible solution to the cluster validity problem of real data. The convergence and membership conservation of the algorithm are proven. The algorithm is shown to be effective for a variety of data sets with a wide dynamic range of both covariance matrices and number of members in each class 相似文献
4.
Evolutionary semi-supervised fuzzy clustering 总被引:3,自引:0,他引:3
For learning classifier from labeled and unlabeled data, this paper proposes an evolutionary semi-supervised fuzzy clustering algorithm. Class labels information provided by labeled data is used to guide the evolution process of each fuzzy partition on unlabeled data, which plays the role of chromosome. The fitness of each chromosome is evaluated with a combination of fuzzy within cluster variance of unlabeled data and misclassification error of labeled data. The structure of the clusters obtained can be used to classify a future new pattern. The performance of the proposed approach is evaluated using two benchmark data sets. Experimental results indicate that the proposed approach can improve classification accuracy significantly, compared to classifier trained with a small number of labeled data only. Also, it outperforms a similar approach SSFCM. 相似文献
5.
基于减法聚类改进的模糊c-均值算法的模糊聚类研究 总被引:2,自引:0,他引:2
针对模糊c-均值(FCM)聚类算法受初始聚类中心影响,易陷入局部最优,以及算法对孤立点数据敏感的问题,提出了解决方案:采用快速减法聚类算法初始化聚类中心,为每个样本点赋予一个定量的权值,用来区分不同的样本点对最终的聚类结果的不同作用,为提高聚类速度采用修正隶属度矩阵的方法,并将算法与传统的FCM相比.实验结果表明,该算法较好地解决了初值问题,与随机初始化方法相比,迭代次数少、收敛速度快、具有较好的聚类结果. 相似文献
6.
特征加权的模糊C聚类算法 总被引:2,自引:0,他引:2
陈新泉 《计算机工程与设计》2007,28(22):5329-5333
参照文献[5]中将K-means聚类算法与特征权重优化相结合的方法,推导出FCM聚类算法与特征权重优化相结合的优化迭代公式,形成加权FCM算法.将加权FCM算法中计算聚类均值项的公式代入到计算隶属度的更新公式和特征权重的更新公式中,得到加权FCM扩展算法.由于这个扩展算法消去了均值项,它对于有序属性和无序类别属性的隶属度和特征权重的更新公式具有统一的形式,因此可以很方便地应用到混合属性数据集的加权聚类分析中来.该算法的收敛性分析与FCM类似,算法迭代结束后能给出一组优化的特征权重值.仿真实验结果与WKMeans算法的结果基本一致,说明该方法在优化混合属性数据集的特征权重时是有效的. 相似文献
7.
Being trapped in local optima within clustering search space currently is nontrivial difficulty. In order to relieve such
a difficulty, even using genetic algorithm to optimize the initial clusters for fuzzy c-means is still unsatisfied. Since
genetic algorithm intensifies only the current best solution, it will easily gets trapped in local minima. The ant colony
system, dissimilarly to genetic algorithm, recognizes that the solutions near the best solution are also good ones and they
bring about smoothness of solution. This paper proposes a modified fuzzy ant clustering. Such a presented method is a combination
of genetic algorithm, ant colony system and fuzzy c-means. It is employed in creating fuzzy color histogram in image retrieval
application. The performance measurement relates to the percentages of accuracy of image retrieval. Experimental results show
that the proposed approach yields the best results among others with respect to sensitivity and robustness on dealing with
lighting intensity changes, quantization errors, also changes in number of images and in size of color space, even the certain-range
variation of a particular parameter of clustering. 相似文献
8.
Bulent Tutmez 《Applied Soft Computing》2012,12(1):1-13
Fuzzy clustering based regression analysis is a novel hybrid approach to capture the linear structure while considering the classification structure of the measurement. Using the concept that weights provided via the fuzzy degree of clustering, some regression models have been proposed in literature. In these models, membership values derived from clustering or some weights obtained from geometrical functions are employed as the weights of regression system. This paper addresses a weighted fuzzy regression analysis based on spatial dependence measure of the memberships. By the methodology presented in this paper, the relative weights are used in fuzzy regression models instead of direct membership values or their geometrical transforms. The experimental studies indicate that the spatial dependence based analyses yield more reliable results to show the correlation of the independent variables into the dependent variable. In addition, it has been observed that spatial dependence based models have high estimation and generalization capacities. 相似文献
9.
Generalized weighted conditional fuzzy clustering 总被引:2,自引:0,他引:2
Fuzzy clustering helps to find natural vague boundaries in data. The fuzzy c-means method is one of the most popular clustering methods based on minimization of a criterion function. Among many existing modifications of this method, conditional or context-dependent c-means is the most interesting one. In this method, data vectors are clustered under conditions based on linguistic terms represented by fuzzy sets. This paper introduces a family of generalized weighted conditional fuzzy c-means clustering algorithms. This family include both the well-known fuzzy c-means method and the conditional fuzzy c-means method. Performance of the new clustering algorithm is experimentally compared with fuzzy c-means using synthetic data with outliers and the Box-Jenkins database. 相似文献
10.
Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers.In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series. 相似文献
11.
Yukihiro Hamasuna Yasunori Endo Sadaaki Miyamoto 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2010,14(5):487-494
This paper presents two new types of clustering algorithms by using tolerance vector called tolerant fuzzy c-means clustering and tolerant possibilistic clustering. In the proposed algorithms, the new concept of tolerance vector plays
very important role. The original concept is developed to handle data flexibly, that is, a tolerance vector attributes not
only to each data but also each cluster. Using the new concept, we can consider the influence of clusters to each data by
the tolerance. First, the new concept of tolerance is introduced into optimization problems. Second, the optimization problems
with tolerance are solved by using Karush–Kuhn–Tucker conditions. Third, new clustering algorithms are constructed based on
the optimal solutions for clustering. Finally, the effectiveness of the proposed algorithms is verified through numerical
examples and its fuzzy classification function. 相似文献
12.
Granular prototyping in fuzzy clustering 总被引:5,自引:0,他引:5
We introduce a logic-driven clustering in which prototypes are formed and evaluated in a sequential manner. The way of revealing a structure in data is realized by maximizing a certain performance index (objective function) that takes into consideration an overall level of matching (to be maximized) and a similarity level between the prototypes (the component to be minimized). The prototypes identified in the process come with the optimal weight vector that serves to indicate the significance of the individual features (coordinates) in the data grouping represented by the prototype. Since the topologies of these groupings are in general quite diverse the optimal weight vectors are reflecting the anisotropy of the feature space, i.e., they show some local ranking of features in the data space. Having found the prototypes we consider an inverse similarity problem and show how the relevance of the prototypes translates into their granularity. 相似文献
13.
In this paper, we investigate graph theory-based clustering techniques for Atanassov’s intuitionistic fuzzy sets (A-IFSs) and interval-valued intuitionistic fuzzy sets (IVIFSs). We start by introducing the concepts of graph, minimum spanning tree (MST), A-IFS, and intuitionistic fuzzy distance, and develop two intuitionistic fuzzy MST clustering algorithms ( and ). Then we extend Algorithm II for clustering IVIFSs, and show the effectiveness of our algorithms through some numerical experiments. 相似文献
14.
Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results. 相似文献
15.
In this paper, we present a new method for multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. First, the proposed method constructs training samples based on the variation rates of the training data set and then uses the training samples to construct fuzzy rules by making use of the fuzzy C-means clustering algorithm, where each fuzzy rule corresponds to a given cluster. Then, we determine the weight of each fuzzy rule with respect to the input observations and use such weights to determine the predicted output, based on the multiple fuzzy rules interpolation scheme. We apply the proposed method to the temperature prediction problem and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) data. The experimental results show that the proposed method produces better forecasting results than several existing methods. 相似文献
16.
A validity measure for fuzzy clustering 总被引:42,自引:0,他引:42
The authors present a fuzzy validity criterion based on a validity function which identifies compact and separate fuzzy c-partitions without assumptions as to the number of substructures inherent in the data. This function depends on the data set, geometric distance measure, distance between cluster centroids and more importantly on the fuzzy partition generated by any fuzzy algorithm used. The function is mathematically justified via its relationship to a well-defined hard clustering validity function, the separation index for which the condition of uniqueness has already been established. The performance of this validity function compares favorably to that of several others. The application of this validity function to color image segmentation in a computer color vision system for recognition of IC wafer defects which are otherwise impossible to detect using gray-scale image processing is discussed 相似文献
17.
新的混合模糊C-均值聚类算法 总被引:1,自引:1,他引:1
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法.它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO).将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度.实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善. 相似文献
18.
Robust fuzzy clustering of relational data 总被引:1,自引:0,他引:1
Popular relational-data clustering algorithms, relational dual of fuzzy c-means (RFCM), non-Euclidean RFCM (NERFCM) (both by Hathaway et al), and FANNY (by Kaufman and Rousseeuw) are examined. A new algorithm, which is a generalization of FANNY, called the fuzzy relational data clustering (FRC) algorithm, is introduced, having an identical objective functional as RFCM. However, the FRC does not have the restriction of RFCM, which is that the relational data is derived from Euclidean distance as the measure of dissimilarity between the objects, and it also does not have limitations of FANNY, including the use of a fixed membership exponent, or a fuzzifier exponent, m. The FRC algorithm is further improved by incorporating the concept of Dave's object data noise clustering (NC) algorithm, done by proposing a concept of noise-dissimilarity. Next, based on the constrained minimization, which includes an inequality constraint for the memberships and corresponding Kuhn-Tucker conditions, a noise resistant, FRC algorithm is derived which works well for all types of non-Euclidean dissimilarity data. Thus it is shown that the extra computations for data expansion (/spl beta/-spread transformation) required by the NERFCM algorithm are not necessary. This new algorithm is called robust non-Euclidean fuzzy relational data clustering (robust-NE-FRC), and its robustness is demonstrated through several numerical examples. Advantages of this new algorithm are: faster convergence, robustness against outliers, and ability to handle all kinds of relational data, including non-Euclidean. The paper also presents a new and better interpretation of the noise-class. 相似文献
19.
20.
To provide feedback from a cluster structure to the data from which it has been determined, we propose a framework for mining typological structures based on a fuzzy clustering model of how the data are generated from a cluster structure. To relate data entities to cluster prototypes, we assume that the observed entities share parts of the prototypes in such a way that the membership of an entity to a cluster expresses the proportion of the cluster's prototype reflected in the entity (proportional membership). In the generic version of the model, any entity may independently relate to any prototype, which is similar to the assumption underlying the fuzzy c-means criterion. The model is referred to as fuzzy clustering with proportional membership (FCPM). Several versions of the model relaxing the generic assumptions are presented and alternating minimization techniques for them are developed. The results of experimental studies of FCPM versions and the fuzzy c-means algorithm are presented and discussed, especially addressing the issues of fitting the underlying clustering model. An example is given with data in the medical field in which our approach is shown to suit better than more conventional methods. 相似文献