首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the initial steps towards the design of novel artificial metalloenzymes that exploit proteins as a second coordination sphere for traditional metal-ligand catalysis are described. Phage display was employed to select and study antibody fragments capable of recognizing hydrophobic BINOL derivatives designed to mimic BINAP, a widely used ligand in asymmetric metal-catalyzed reactions. The binding affinities of the selected antibodies towards a series of haptens were evaluated by using ELISA assays. A homology model of one of the most selective antibodies was constructed, and a computer-assisted ligand-docking study was carried out to elucidate the binding of the hapten. It was shown that, due to the hydrophobic nature of the haptens, a higher level of theoretical treatment was required to identify the correct binding modes. A small selection of the antibodies was found to discriminate between enantiomers and small structural modifications of the BINOL derivatives. The selectivities arise from hydrophobic interactions, and we propose that the identified set of antibodies provides a foundation for a novel route to artificial metalloenzymes.  相似文献   

2.
3.
Convulsions are common neurological disorders in clinical medicine and are triggered by several mechanisms. The enhancement of neuronal excitability can be related, among other factors, to GABAergic depolarization. Carbonic anhydrase (CA) VII contributes to this electrophysiological behavior by providing bicarbonate anion, which can mediate current through channels coupled to GABA(A) receptors. Among the cytosolic CAs, the mechanism of action and inhibition of CA VII is less understood. We present herein the pharmacological evaluation of both enantiomers of an indanesulfonamide compound substituted by a pentafluorophenyl moiety against CA VII and five other human CA isoforms to evaluate their selectivity. The investigated compounds are powerful inhibitors of hCA VII, with K(i) values in the range of 1.7-3.3 nM, but their selectivity needs to be improved. A molecular modeling study was conducted to rationalize the structure-activity relationships and provide useful insight into the future design of selective hCA VII inhibitors.  相似文献   

4.
Heterocyclic diamidines are strong DNA minor‐groove binders and have excellent antiparasitic activity. To extend the biological activity of these compounds, a series of arylimidamides (AIAs) analogues, which have better uptake properties in Leishmania and Trypanosoma cruizi than diamidines, was prepared. The binding of the AIAs to DNA was investigated by Tm, fluorescence displacement titration, circular dichroism, DNase I footprinting, biosensor surface plasmon resonance, X‐ray crystallography and molecular modeling. These compounds form 1:1 complexes with AT sequences in the DNA minor groove, and the binding strength varies with substituent size, charge and polarity. These substituent‐dependent structure and properties provide a SAR that can be used to estimate K values for binding to DNA in this series. The structural results and molecular modeling studies provide an explanation for the differences in binding affinities for AIAs.  相似文献   

5.
Du L  Shen L  Yu Z  Chen J  Guo Y  Tang Y  Shen X  Jiang H 《ChemMedChem》2008,3(1):173-180
HIV-1 integrase (IN) is composed of three domains, the N-terminal domain (NTD, residues 1-50), the catalytic core domain (CCD, residues 51-212), and the C-terminal domain (CTD, residues 213-288). All the three domains are required for the two known integration reactions. CCD contains the catalytic triad and is believed to bind viral DNA specifically, and CTD binds viral DNA in a nonspecific manner. As no clear evidence has confirmed the involvement of NTD in DNA binding directly, NTD has not been seriously considered and less is known about its function in viral replication. In the current work, using a SPR technology-based assay, the HIV-1 viral DNA was determined to bind directly to NTD with a K(D) value of 8.8 microM, suggesting that the process of preintegrated complex formation for HIV-1 IN might involve the direct interaction of NTD with viral DNA in addition to binding of viral DNA to the catalytic core domain and C-terminal domain. Moreover, such viral DNA/IN binding could be inhibited by the marine product hyrtiosal from the marine sponge Hyrtios erectus with an IC(50) of 9.60+/-0.86 microM. Molecular dynamic analysis correlated with a site-directed mutagenesis approach further revealed that such hyrtiosal-induced viral DNA/IN binding inhibition was caused by the fact that hyrtiosal could bind HIV-1 NTD at Ser17, Trp19, and Lys34. As hyrtiosal was recently discovered by us as a protein tyrosine phosphatase 1B (PTP1B) inhibitor,1 this work might also supply multiple-target information for this marine product, and the verified HIV-NTD/HIV-1 IN interaction model could have further implications for new HIV-1 IN inhibitor design and evaluation.  相似文献   

6.
Homoserine dehydrogenase (HSD) from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ), a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (l-aspartate semialdehyde (l-ASA)) binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. After use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation–π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.  相似文献   

7.
Three novel 2,7-substituted acridine derivatives were designed and synthesized to investigate the effect of this functionalization on their interaction with double-stranded and G-quadruplex DNA. Detailed investigations of their ability to bind both forms of DNA were carried out by using spectrophotometric, electrophoretic, and computational approaches. The ligands in this study are characterized by an open-chain (L1) or a macrocyclic (L2, L3) framework. The aliphatic amine groups in the macrocycles are joined by ethylene (L2) or propylene chains (L3). L1 behaved similarly to the lead compound m-AMSA, efficiently intercalating into dsDNA, but stabilizing G-quadruplex structures poorly, probably due to the modest stabilization effect exerted by its protonated polyamine chains. L2 and L3, containing small polyamine macrocyclic frameworks, are known to adopt a rather bent and rigid conformation; thus they are generally expected to be sterically impeded from recognizing dsDNA according to an intercalative binding mode. This was confirmed to be true for L3. Nevertheless, we show that L2 can give rise to efficient π-π and H-bonding interactions with dsDNA. Additionally, stacking interactions allowed L2 to stabilize the G-quadruplex structure: using the human telomeric sequence, we observed the preferential induction of tetrameric G-quadruplex forms. Thus, the presence of short ethylene spacers seems to be essential for obtaining a correct match between the binding sites of L2 and the nucleobases on both DNA forms investigated. Furthermore, current modeling methodologies, including docking and MD simulations and free energy calculations, provide structural evidence of an interaction mode for L2 that is different from that of L3; this could explain the unusual stabilizing ability of the ligands (L2>L3>L1) toward G-quadruplex that was observed in this study.  相似文献   

8.
cis,cis-(+/-)-6-(2,2-Dimethylpropanamido)spiro[4.4]nonan-1-ol, 1, a chiral auxiliary for Diels-Alder additions, was resolved by enzyme-catalyzed hydrolysis of the corresponding butyrate and acrylate esters. Subtilisin Carlsberg protease and bovine cholesterol esterase both showed high enantioselectivity in this process, but favored opposite enantiomers. Subtilisin Carlsberg favored esters of (1S,5S,6S)-1, while bovine cholesterol esterase favored esters of (1R,5R,6R)-1, consistent with the approximately mirror-image arrangement of the active sites of subtilisins and lipases/esterases. A gram-scale resolution of 1-acrylate with subtilisin Carlsberg yielded (1S,5S,6S)-1 (1.1 g, 46 % yield, 99 % ee) and (1R,5R,6R)-1-acrylate (1.3 g, 44 % yield, 99 % ee) although the reaction was slow. The high enantioselectivity combined with the conformational rigidity of the substrate made this an ideal example to identify the molecular basis of the enantioselectivity of subtilisin Carlsberg toward secondary alcohols. When modeled, the favored (1S,5S,6S) enantiomer adopted a catalytically productive conformation with two longer-than-expected hydrogen bonds, consistent with the slow reaction rate. The unfavored (1R,5R,6R) enantiomer encountered severe steric interactions with catalytically essential residues in the model. It either distorted the catalytic histidine position or encountered severe steric strain with Asn155, an oxyanion-stabilizing residue.  相似文献   

9.
The DNA binding mechanism of box B in HMG1, a member of thesequence non-specific DNA binding HMG1/2-box family of proteins,has been examined by both mutation analyses and molecular modelingtechniques. Substitution of the residue 102F, which is characteristicallyexposed to solvent, with a small hydrophobic amino acid affectedits DNA binding activity. However, no additional effect wasobserved by the further mutation of flanking 101F. Moleculardynamics simulation and modeling studies revealed that 102Fintercalates into DNA base-pairs, being supported by the flanking101F. The mutants with a small hydrophobic residue at position102 tolerated the substitution for 101F because the side chainat position 102 is too short to intercalate. Thus the intercalationof 102F and the positive effect of the flanking 101F residueare important for the sequence non-specific DNA binding of theHMG1/2-box. The conserved basic residues of 95K, 96R and 109Rwere also examined for their roles in DNA binding. These residuesinteracted with DNA mainly by electrostatic interaction andmaintained the location of the box on the DNA, which prescribedthe intercalation of 102F. The DNA intercalation by HMG1 consistsof an ingenious mechanism which brings DNA conformational changesnecessary for biological functions.  相似文献   

10.
Neurotransmitter release at the synapse requires fusion of synaptic vesicles with the presynaptic plasma membrane. SNAREs are the core constituents of the protein machinery responsible for this membrane fusion, but the actual fusion mechanism remains unclear. Here, we have simulated neuronal SNARE-mediated membrane fusion in molecular detail. In our simulations, membrane fusion progresses through an inverted micelle fusion intermediate before reaching the hemifused state. We show that at least one single SNARE complex is required for fusion, as has also been confirmed in a recent in vitro single-molecule fluoresence study. Further, the transmembrane regions of the SNAREs were found to play a vital role in the initiation of fusion by causing distortions of the lipid packing of the outer membrane leaflets, and the C termini of the transmembrane regions are associated with the formation of the fusion pores. The inherent mechanical stress in the linker region of the SNARE complex was found to drive both the subsequent formation and expansion of fusion pores. Our simulations also revealed that the presence of homodimerizations between the transmembrane regions leads to the formation of unstable fusion intermediates that are under high curvature stress. We show that multiple SNARE complexes mediate membrane fusion in a cooperative and synchronized process. Finally, we show that after fusion, the zipping of the SNAREs extends into the membrane region, in agreement with the recently resolved X-ray structure of the fully assembled state.  相似文献   

11.
A homology model of human choline kinase (CK-alpha) based on the X-ray crystallographic structure of C. elegans choline kinase (CKA-2) is presented. Molecular dynamics simulations performed on CK-alpha confirm the quality of the model, and also support the putative ATP and choline binding sites. A good correlation between the MD results and reported CKA-2 mutagenesis assays has been found for the main residues involved in catalytic activity. Preliminary docking studies performed on the CK-alpha model indicate that inhibitors can bind to the binding sites of both substrates (ATP and choline). A possible reason for inhibition of choline kinase by Ca(2+) ion is also proposed.  相似文献   

12.
The thymine DNA mismatch glycosylase from Methanobacterium thermoformicicum,a member of the endonuclease III family of repair proteins,excises the pyrimidine base from T–G and U–G mismatches.Unlike endonuclease III, it does not cleave the phosphodiesterbackbone by a ß-elimination reaction. This cleavage eventhas been attributed to a nucleophilic attack by the conservedLys120 of endonuclease III on the aldehyde group at C1' of thedeoxyribose and subsequent Schiff base formation. The inabilityof TDG to perform this ß-elimination event appears tobe due to the presence of a tyrosine residue at the positionequivalent to Lys120 in endonuclease III. The purpose of thiswork was to investigate the requirements for AP lyase activity.We replaced Tyr126 in TDG with a lysine residue to determineif this replacement would yield an enzyme with an associatedAP lyase activity capable of removing a mismatched pyrimidine.We observed that this replacement abolishes the glycosylaseactivity of TDG but does not affect substrate recognition. Itdoes, however, convert the enzyme into an AP lyase. Chemicaltrapping assays show that this cleavage proceeds through a Schiffbase intermediate and suggest that the amino acid at position126 interacts with C1' on the deoxyribose sugar.  相似文献   

13.
14.
The molecular basis for human group IIA phospholipase A(2) inactivation by the marine natural product cladocoran A (CLD A) has been studied in order to elucidate its relevant anti-inflammatory properties. Indeed, secretory phospholipases A(2) are well-known to be implicated in the pathogenesis of inflammation, such as rheumatoid arthritis, septic shock, psoriasis and asthma, thus the understanding of their inactivation mechanism could be useful for the development of new chemical classes of selective inhibitors. Our results, collected by a combination of biochemical approaches, advanced mass spectrometry and molecular modeling, suggest a competitive inhibition mechanism guided by a noncovalent molecular recognition event, and disclose the key role of the CLD A γ-hydroxybutenolide ring in the chelation of the catalytic calcium ion inside the enzyme active site. Moreover, CLD A is able to react selectively with Ser82, although this covalent event seems to play a secondary role in terms of enzyme inhibition.  相似文献   

15.
Thymine glycol (Tg), one of the oxidized bases formed in DNA by reactive oxygen species, is repaired by the DNA glycosylases such as NEIL1, NTH1 and Endo III. In our recent studies, we showed that NEIL1's catalytic efficiency and lesion specificity are regulated by an RNA-editing adenosine deamination reaction. In this study, we synthesized oligodeoxynucleotides containing 2'-fluorothymidine glycol with either ribo or arabino configuration and investigated the binding of these modified DNAs with the unedited and edited forms of human NEIL1 along with E. coli Endo III. For the two forms of hNEIL1, binding affinities to FTg-containing DNA were similar indicating that the editing effect is more subtle than to simply alter substrate affinity. While the NEIL1-binding to FTg-containing DNAs was largely insensitive to C5 and 2' stereochemistry, a preference was observed for the FTg-G pair over the FTg-A pair. In addition, we found that optimal binding is observed with Endo III and duplex DNA with riboFTg(5S) paired with dG. The modified DNAs reported here will provide useful tools for further characterizing the interaction between DNA repair glycosylases and thymine glycol containing DNA.  相似文献   

16.
Three analogues of amythiamicin D, which differ in the substitution pattern at the methine group adjacent to C2 of the thiazole ring C, were prepared by de novo total synthesis. In amythiamicin D, this carbon atom is (S)‐isopropyl substituted. Two of the new analogues carry a hydroxymethyl in place of the isopropyl group, one at an S‐ (compound 3 a ) and the other at an R‐configured stereogenic center ( 3 b ). The third analogue, 3 c , contains a benzyloxymethyl group at an S‐configured stereogenic center. Compounds 3 b and 3 c showed no inhibitory effect toward various bacterial strains, nor did they influence the translation of firefly luciferase. In stark contrast, compound 3 a inhibited the growth of Gram‐positive bacteria Staphylococcus aureus (strains NCTC and Mu50) and Listeria monocytogenes EGD. In the firefly luciferase assay it proved more potent than amythiamicin D, and rescue experiments provided evidence that translation inhibition is due to binding to the bacterial elongation factor Tu (EF‐Tu). The results were rationalized by structural investigations and by molecular dynamics simulations of the free compounds in solution and bound to the EF‐Tu binding site. The low affinity of compound 3 b was attributed to the absence of a critical hydrogen bond, which stabilizes the conformation required for binding to EF‐Tu. Compound 3 c was shown not to comply with the binding properties of the binding site.  相似文献   

17.
The experimental binding affinities of a series of linked sulfated tetracyclitols [Cyc2N-R-NCyc2, where Cyc = C6H6(OSO3Na)3 and R = (CH2)n (n = 2-10), p-xylyl or (C2H4)2-Ncyc] for the fibroblast growth factors FGF-1 and FGF-2 have been measured by using a surface plasmon resonance assay. The KD values range from 7.0 nM to 1.1 microM for the alkyl-linked ligands. The binding affinity is independent of the flexibility of the linker, as replacement of the alkyl linker with a rigid p-xylyl group did not affect the KD. Calculations suggest that binding modes for the p-xylyl-linked ligand are similar to those calculated for the flexible alkyl-linked tetracyclitols. The possible formation of cross-linked FGF:cyclitol complexes was examined by determining KD values at increasing protein concentrations. No changes in KD were observed; this suggesting that only 1:1 complexes are formed under these assay conditions. Monte Carlo multiple-minima calculations of low-energy conformers of the FGF-bound ligands showed that all of the sulfated tetracyclitol ligands can bind effectively in the heparan sulfate-binding sites of FGF-1 and FGF-2. Binding affinities of these complexes were estimated by the Linear Interaction Energy (LIE) method to within a root-mean-square deviation of 1 kcal mol(-1) of the observed values. The effect of incorporating cations to balance the overall charge of the complexes during the LIE calculations was also explored.  相似文献   

18.
The inhibition of cytochrome P450 3A4 (CYP3A4) by small molecules is a major mechanism associated with undesired drug-drug interactions, which are responsible for a substantial number of late-stage failures in the pharmaceutical drug-development process. For a quantitative prediction of associated pharmacokinetic parameters, a computational model was developed that allows prediction of the inhibitory potential of 48 structurally diverse molecules. Based on the experimental structure of CYP3A4, possible binding modes were first sampled by using automated docking (Yeti software) taking protein flexibility into account. The results are consistent with both X-ray crystallographic data and data from metabolic studies. Next, an ensemble of energetically favorable orientations was composed into a 4D dataset for use as input for a multidimensional QSAR technique (Raptor software). A dual-shell binding-site model that allows an explicit induced fit was then generated by using hydrophobicity scoring and hydrogen-bond propensity. The simulation reached a cross-validated r2 value of 0.825 and a predictive r2 value of 0.659. On average, the predicted binding affinity of the training ligands deviates by a factor of 2.7 from the experiment; those of the test set deviate by a factor of 3.8 in Ki.  相似文献   

19.
Hydration is a major determinant of activity and selectivity of enzymes in organic solvents or in gas phase. The molecular mechanism of the hydration of Candida antarctica lipase B (CALB) and its dependence on the thermodynamic activity of water (aw) was studied by molecular dynamics simulations and compared to experimentally determined water sorption isotherms. Hydration occurred in two phases. At low water activity, single water molecules bound to specific water binding sites at the protein surface. As the water activity increased, water networks gradually developed. The number of protein‐bound water molecules increased linearly with aw, until at aw=0.5 a spanning water network was formed consisting of 311 water molecules, which covered the hydrophilic surface of CALB, with the exception of the hydrophobic substrate‐binding site. At higher water activity, the thickness of the hydration shell increased up to 10 Å close to aw=1. Above a limit of 1600 protein‐bound water molecules the hydration shell becomes unstable and the formation of pure water droplets occurs in these oversaturated simulation conditions. While the structure and the overall flexibility of CALB was independent of the hydration state, the flexibility of individual loops was sensitive to hydration: some loops, such as those part of the substrate‐binding site, became more flexible, while other parts of the protein became more rigid upon hydration. However, the molecular mechanism of how flexibility is related to activity and selectivity is still elusive.  相似文献   

20.
We developed a new empirical scoring function, HYDE, for the evaluation of protein-ligand complexes. HYDE estimates binding free energy based on two terms for dehydration and hydrogen bonding only. The essential feature of this scoring function is the integrated use of log P-derived atomic increments for the prediction of free dehydration energy and hydrogen bonding energy. Taking the dehydration of atoms within the interface into account shows that some atoms contribute favorably to the overall score, while others contribute unfavorably. For instance, hydrogen bond functions are penalized if they are dehydrated unless they can overcompensate this loss by forming a hydrogen bond with excellent geometry. The main stabilizing contribution represents the removal of apolar groups from the water: the hydrophobic effect. Initial studies using the DUD dataset show that with HYDE, there is a significant decrease in false positives, a reasonable categorization of compounds as either non-binders, weak, medium or strong binders, and in particular, there is a generally applicable and thermodynamically sensible cutoff score below which there is a high likelihood that the compound is indeed a binder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号