首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Poisson’s equation and drift–diffusion equations are used to simulate the current–voltage characteristics of Schottky diode with an inverse doped surface layer. The potential inside the bulk semiconductor near the metal–semiconductor contact is estimated by simultaneously solving these equations, and current as a function of bias through the Schottky diode is calculated for various inverse layer thicknesses and doping concentrations. The Schottky diode parameters are then extracted by fitting of simulated current–voltage data into thermionic emission diffusion equation. The obtained diode parameters are analyzed to study the effect of inverse layer thickness and doping concentration on the Schottky diode parameters and its behavior at low temperatures. It is shown that increase in inverse layer thickness and its doping concentration give rise to Schottky barrier height enhancement and a change in the ideality factor. The temperature dependences of Schottky barrier height and ideality factor are studied. The effect of temperature dependence of carrier mobility on the Schottky diode characteristics is also discussed.  相似文献   

2.
The low-frequency excess noise in Schottky barrier diodes has been investigated. In the ideal case where the saturation current is completely determined by thermionic emission of electrons, no 1/? noise will be produced in the barrier. The presence of trap states in the depletion region can lead to generation-recombination noise. At sufficient high forward currents 1/? noise can be generated in the series resistance of the Schottky diode. Deviations from the ideal diode, for example as a result of edge effects, produce 1/? noise and increase at the same time the ideality factor. It is empirically found that the 1/? noise level decreases very rapidly if the ideality factor tends to unity.  相似文献   

3.
蒙特卡罗方法模拟金属-半导体接触的直接隧穿效应   总被引:4,自引:2,他引:2  
孙雷  杜刚  刘晓彦  韩汝琦 《半导体学报》2001,22(11):1364-1368
运用自洽的蒙特卡罗方法模拟了肖特基接触的隧穿效应 .模拟的内容包括具有不同的势垒高度的金属 -半导体接触在正向和反向偏置下的工作状态 .分析模拟结果可知 ,隧穿电流在反向偏置下起主要的作用 .同时还模拟了引入肖特基效应后 ,SBD的工作特性 ,验证了模拟使用的物理模型 .得到了与理论计算值符合的模拟结果 .分析模拟结果表明 ,由于肖特基效应形成的金属 -半导体接触势垒的降低 ,会在很大程度上影响金属 -半导体接触的输运特性  相似文献   

4.
Poisson’s equation and the drift–diffusion equations are used to simulate the current–voltage characteristics of a Schottky diode with an inverse doped surface layer. The potential inside the bulk semiconductor near the metal–semiconductor contact is estimated by simultaneously solving these equations, and then current as a function of bias through the Schottky diode is calculated. The Schottky diode parameters are extracted by fitting of simulated data to the thermionic emission diffusion equation. The simulation is carried out for various inverse layer thicknesses and doping concentrations. The obtained diode parameters are analyzed to study the effect of the inverse layer thickness and doping concentration on Schottky diode modification and its behavior at low temperatures. It is shown that an increase in the inverse layer thickness and doping concentration leads to Schottky barrier height enhancement and a change in the ideality factor. The temperature dependences of the Schottky barrier height and ideality factor are also studied.  相似文献   

5.
The Poisson's equation and the drift diffusion equations have been used to simulate the current–voltage characteristics of Schottky diode. The potential variation inside the bulk semiconductor near the metal–semiconductor contact was estimated first and then the current as a function of bias through the Schottky diode using silicon parameters were calculated over a wide temperature range. From the simulated current–voltage characteristics the diode parameters were extracted by fitting of current–voltage data into thermionic emission diffusion current equation. The derived barrier parameters are analysed to study the effect of various parameters, e.g. semiconductor thickness, doping concentration, temperature dependence of carrier mobility and energy band gap, on the current–voltage characteristics of Schottky diode in view of the thermionic emission diffusion current equations.  相似文献   

6.
A physics-based closed form analytical model for the reverse leakage current of a high voltage junction barrier Schottky (JBS) diode is developed and shown to agree with experimental results. Maximum electric field “seen” by the Schottky contact is calculated from first principles by a 2-dimensional method as a function of JBS diode design parameters and confirmed by numerical simulations. Considering thermionic emission under image force barrier lowering and quantum mechanical tunneling, electric field at the Schottky contact is then related to reverse current. In combination with previously reported forward current and resistance models, this gives a complete I-V relationship for the JBS diode. A layout of interdigitated stripes of P-N and Schottky contacts at the anode is compared theoretically with a honeycomb layout and the 2-D model is extended to the 3-D honeycomb structure. Although simulation and experimental results from 4H-Silicon Carbide (SiC) diodes are used to validate it, the model itself is applicable to all JBS diodes.  相似文献   

7.
In a Schottky diode, the diode saturation current is controlled by the barrier height at the metal and semi-conductor contact, assuming that the dominant current is due to thermionic emission. When ion implantation is used to increase the barrier height, both thermionic emission and drift-diffusion of carriers become important in calculating the current. Numerical methods are used in solving Poisson's equation and the current continuity equations for an ion implanted doping profile. The electron and hole current in the surface region are calculated as a function of the total implantation dosage. The results show that the decrease of saturation current and the increase of effective barrier height in an ion implanted diode is mainly due to the suppression of the thermionic emission current by the implanted impurity atoms, rendering the diode to act like a pn junction.  相似文献   

8.
A unified simulation of Schottky and ohmic contacts   总被引:3,自引:0,他引:3  
The Schottky contact is an important consideration in the development of semiconductor devices. This paper shows that a practical Schottky contact model is available for a unified device simulation of Schottky and ohmic contacts. The present model includes the thermionic emission at the metal/semiconductor interface and the spatially distributed tunneling calculated at each semiconductor around the interface. Simulation results of rectifying characteristics of Schottky barrier diodes (SBD's) and resistances under high impurity concentration conditions are reasonable, compared with measurements. As examples of application to actual devices, the influence of the contact resistance on salicided MOSFETs with source/drain extension and the immunity of Schottky barrier tunnel transistors (SBTTs) from the short-channel effect (SCE) are demonstrated  相似文献   

9.
The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson-Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal-semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes, which will in turn act on the I-V characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.  相似文献   

10.
11.
Ti/4H–SiC Schottky barrier diode without any intentional edge termination is fabricated. The obtained properties, low on-resistance of 3 mΩ cm2 and low leakage current of 10−4 A/cm2 at 1000 V, are evaluated by device simulation considering pinning at metal/semiconductor interface. The breakdown voltage is explained by minimization of electric field enhancement at the Schottky electrode edge due to pinning. The leakage current corresponds to Schottky barrier tunneling current depending on drift layer doping and Schottky barrier height.  相似文献   

12.
This paper reports on estimating the Schottky barrier height of small contacts using a thermionic‐field emission model. Our results indicate that the logarithmic plot of the current as a function of bias voltage across the Schottky diode gives a linear relationship, while the plot as a function of the total applied voltage across a metal‐silicon contact gives a parabolic relationship. The Schottky barrier height is extracted from the slope of the linear line resulting from the logarithmic plot of current versus bias voltage across the Schottky diode. The result reveals that the barrier height decreases from 0.6 eV to 0.49 eV when the thickness of the barrier metal is increased from 500 Å to 900 Å. The extracted impurity concentration at the contact interface changes slightly with different Ti thicknesses with its maximum value at about 2.9×1020 cm?3, which agrees well with the results from secondary ion mass spectroscopy (SIMS) measurements.  相似文献   

13.
In this paper, carrier transport mechanism of MOSFETs with HfLaSiON was analyzed. It was shown that gate current is consisted of Schottky emission, Frenkel-Poole (F-P) emission and Fowler-Nordheim (F-N) tunneling components. Schottky barrier height is calculated to be 0.829 eV from Schottky emission model. Fowler-Nordheim tunneling barrier height was 0.941 eV at high electric field regions and the trap energy level extracted using Frenkel-Poole emission model was 0.907 eV. From the deviation of weak temperature dependence for gate leakage current at low electric field region, TAT mechanism is also considered.  相似文献   

14.
A new model for high bias transport is reported which describes the time-dependent reverse current variations in amorphous silicon Schottky diodes. This phenomenon is of practical importance in the design and optimization of pixels for large-area optical and X-ray imaging. In the model, the main components of the reverse current, namely thermionic emission and tunneling, are both affected by the electric field at the metal/amorphous silicon interface. Time-dependent variations in this electric field arise due to the release of charges trapped in defect states in the depletion region and to charge trapping at the interface. This effect is analyzed using the approximation that the tunneling component of the current is equivalent to a lowering of the potential barrier at the interface. The calculated time-dependent reverse current is compared with the measured data  相似文献   

15.
Theoretical models for the generation-recombination noise and trapping noise in metal-semiconductor Schottky barrier diodes are developed. Low-frequency excess noise in Schottky barrier diodes is found to be dominated by the modulation of the barrier height φB caused by fluctuation in the charge state of traps or generation-recombination centers. This noise mechanism does not occur in p-n junctions. The bias and the temperature dependence of the generation-recombination noise is critically compared with the experimental data for forward diode current ranges from 3 to 300 µA and operating temperatures from -25° to 100°C. Trapping noise in Schottky barrier diodes is observed at low temperatures in diodes not intentionally doped with deep level impurities. The experimental results on trapping noise can be described by assuming that the trap states have a constant capture cross section and are uniformly distributed in space, as well as in energy. The surface potential at the diode periphery also has an important effect on the Schottky barrier diode noise. The best low-frequency noise behavior is found when the surface is at the flat-band condition. An accumulated surface is always associated with a large amount of low-frequency excess noise.  相似文献   

16.
Electron traps in MIS-type Schottky barriers on n-GaAs were investigated by measuring the change of the flat-band voltage, due to detrapping, as a function of time. The trap depth and the capture cross section for a particular trap were obtained from the temperature dependence of the time constant for detrapping. It was found that the detrapping process in some cases is a two-state thermionic emission and tunneling process. For other trapping levels the results indicated clearly that the mechanism was different from the thermionic emission and tunneling process.  相似文献   

17.
Mechanisms of current flow in metal-semiconductor ohmic contacts   总被引:1,自引:0,他引:1  
Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II–VI semiconductors (ZnSe, ZnO), III–V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1–0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3–0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.  相似文献   

18.
Electrostatic screening in the metal contact of a Schottky (metal-semiconductor) diode is shown to influence the calculated electrical characteristics of the diode. A thin space-charge layer is formed at the surface of the metal contact by capacitively induced free charges, This results in a voltage dependent diminution of the barrier height of the diode that increases in magnitude with increasing semiconductor dielectric constant and carrier concentration. Predicted values of the barrier height diminution exceed those attributed to image forces or tunneling effects for materials with dielectric constants greater than about 20. In diodes using semiconducting ferroelectric or piezoelectric materials, an additional diminution of the barrier height results from free charges induced in the metal contact by a remanent polarization field or an externally applied mechanical stress. Current-voltage characteristics of a metal-semiconductor diode are shown to be significantly influenced by the electrostatic screening effect. A soft breakdown current as opposed to saturation current is predicted for reverse biases while an exponential forward current with an η coefficient exceeding unity is predicted for forward biases. Photoemission characteristics are also affected. A voltage-dependent diminution of the threshold energy for photoresponse is predicted. Capacitance-voltage characteristics, on the other hand, differ only slightly from those of an ideal Schottky diode except in the case of a ferroelectric diode where excessively large screening effects are possible.  相似文献   

19.
We demonstrate that the mechanism responsible for the gate current in heterostructure insulated gate field-effect transistors (HIGFET's) changes drastically at the gate voltage equal to the threshold voltage. At the gate voltages below the threshold voltage the gate current is determined by the thermionic emission over the Schottky barrier at high temperatures and by the thermionic field emission at low temperatures. Above the threshold the gate current is determined by the new mechanism which is the thermionic emission over the conduction band discontinuity at high temperatures and by tunneling through the AlGaAs layer at low temperatures. We present the model describing the gate current in the entire range of the gate voltages and device temperatures.  相似文献   

20.
采用分段提参的方法,针对SMIC 130nm CMOS工艺下CoSi2-Si肖特基二极管的直流及高频特性建立统一模型。直流时除了热发射效应,也考虑了势垒不均匀效应、大注入效应及隧穿效应的影响。高频时,在直流特性基础上特别考虑了衬底以及金属寄生效应的影响。该模型直流拟合误差为1.26%,高频时在整个测试频段(1GHz~67GHz)内电阻、电容拟合误差分别为3.16%和2.25%。据我们所知,这是首次针对CoSi2-Si肖特基二极管建立完整模型,考虑直流及高频特性并给出了相应的提参步骤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号