首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed retinal culture system of adult mammals to investigate neural regeneration from adult retinal ganglion cells (RGC). In this culture system, neurites were regenerated from RGCs of adult retinal explants. Investigation of neurotrophic effects on the neural regeneration showed that some interleukins and neurotrophins enhanced neurite regeneration from adult rat RGCs. We also found that the adult human retina had the ability of neural regeneration and that neurotrophins enhanced this ability. A novel neurotrophic factor secreted by adult rat hepatocytes also enhanced neurite regeneration not only in adult mice but also in aged RGCs. This result indicated the novel hepatocyte secreted factor is an activator which enhances neural regeneration of the aged retina. We concluded that even adult aged RGCs had the ability of axonal regeneration after injury and that neurotrophic factors might enhanced these abilities. Therefore neurotrophic factors might have practicable applications in drug treatments for intractable disease of the neural retina and optic nerve. Future progress of neuroscience is expected to rescue the retina from various diseases, and to render possible the transplantation of the retina and optic nerve.  相似文献   

2.
3.
4.
In this study, we demonstrate that: (i) injection of an adenovirus (Ad) vector containing the brain-derived neurotrophic factor (BDNF) gene (Ad.BDNF) into the vitreous chamber of adult rats results in selective transgene expression by Müller cells; (ii) in vitro, Müller cells infected with Ad.BDNF secrete BDNF that enhances neuronal survival; (iii) in vivo, Ad-mediated expression of functional BDNF by Müller cells, temporarily extends the survival of axotomized retinal ganglion cells (RGCs); 16 days after axotomy, injured retinas treated with Ad.BDNF showed a 4.5-fold increase in surviving RGCs compared with control retinas; (iv) the transient expression of the BDNF transgene, which lasted approximately 10 days, can be prolonged with immunosuppression for at least 30 days, and such Ad-mediated BDNF remains biologically active, (v) persistent expression of BDNF by infected Müller cells does not further enhance the survival of injured RGCs, indicating that the effect of this neurotrophin on RGC survival is limited by changes induced by the lesion within 10-16 days after optic nerve transection rather than the availability of BDNF. Thus, Ad-transduced Müller cells are a novel pathway for sustained delivery of BDNF to acutely-injured RGCs. Because these cells span the entire thickness of the retina, Ad-mediated gene delivery to Müller cells may also be useful to influence photoreceptors and other retinal neurons.  相似文献   

5.
Retinal ganglion cells (RGCs) and their projections in the optic nerve offer a convenient model to study survival and regeneration of mammalian central nervous system (CNS) nerve cells following injury. Possible factors affecting the death of RGCs following axotomy and various approaches to rescue the axotomized RGCs are discussed. In addition, two main strategies currently used to enhance axonal regeneration of damaged RGCs are described. The first focuses on overcoming the unfavorable extrinsic CNS environment and the second concentrates on upregulating the intrinsic growth potential of RGCs. Thus, the failure or success of RGC axonal regrowth after injury depends on the complicated interplay between the extrinsic and intrinsic factors.  相似文献   

6.
1. The slope of curves relating the log increment threshold to log background luminance in cat retinal ganglion cells is affected by the area and duration of the test stimulus, as it is in human pyschophysical experiments. 2. Using large area, long duration stimuli the slopes average 0-82 and approach close to 1 (Weber's Law) in the steepest cases. Small stimuli gave an average of 0-53 for on-centre units using brief stimuli, and 0-56 for off-centre units, using long stimuli. Slopes under 0-5 (square root law) were not found over an extended range of luminances. 3. On individual units the slope was generally greater for larger and longer test stimulus, but no unit showed the full extent of change from slope of 0-5 to slope of 1. 4. The above differences hold for objective measures of quantum/spike ratio, as well as for thresholds either judged by ear or assessed by calculation. 5. The steeper slope of the curves for large area, long duration test stimuli compared with small, long duration stimuli, is associated with the increased effectiveness of antagonism from the surround at high backgrounds. This change may be less pronounced in off-centre units, one of which (probably transient Y-type) showed no difference of slope, and gave parallel area-threshold curves at widely separated background luminances, confirming the importance of differential surround effectiveness in changing the slope of the curves. 6. In on-centre units, the increased relative effectiveness of the surround is associated with the part of the raised background light that falls on the receptive field centre. 7. It is suggested that the variable surround functions as a zero-offset control that sets the threshold excitation required for generating impulses, and that this is separate from gain-setting adaptive mechanisms. This may be how ganglion cells maintain high incremental sensitivity in spite of a strong maintained excitatory drive that would otherwise cause compressive response non-linearities.  相似文献   

7.
Investigation of the morphology of ganglion cells in the cat retina has shown that a remarkable reduction in the number of dendritic spines and branches occurs during development of the alpha and beta cell classes. To learn whether dendritic remodelling represents a generalized mechanism of mammalian retinal ganglion cell development, we have examined the morphology of ganglion cells in the retina of the developing rat. The present study has concentrated on type II cells, which retain a great number of dendritic spines and branches in the adult and comprise a large proportion of the population of rat retinal ganglion cells. To reveal fine dendritic and axonal processes, Lucifer yellow was injected intracellularly in living retinae maintained in vitro. Size and complexity of the dendritic trees were found to increase rapidly during an initial stage of development lasting from late fetal life until approximately postnatal day 12 (P12). Dendrites and axons of immature ganglion cells expressed several transient morphological features comprising an excessive number of dendritic branches and spine-like processes, and short, delicate axonal sidebranches. The following developmental stage was characterized by a remarkable decrease in the morphological complexity of retinal ganglion cells and a slowed growth of their dendritic fields. The number of dendritic branches and spines of types I and II retinal ganglion cells declined after P12 to reach a mature level by the end of the first postnatal month. Thus, even cells that retain a highly complex dendritic tree into the adult state undergo extensive remodelling. These results suggest that regressive modifications at the level of the dendritic field constitute a generalized mechanism of maturation in mammalian retinal ganglion cells.  相似文献   

8.
Previous studies have shown that directionally selective (DS) retinal ganglion cells cannot only discriminate the direction of a moving object but they can also discriminate the sequence of two flashes of light at neighboring locations in the visual field: that is, the cells elicit a DS response to both real and apparent motion. This study examines whether a DS response can be elicited in DS ganglion cells by simply stimulating two neighboring areas of the retina with high external K+. Extracellular recordings were made from ON-OFF DS ganglion cells in superfused rabbit retinas, and the responses of these cells to focal applications of 100 mM KCl to the vitreal surface of the retina were measured. All cells produced a burst of spikes (typically lasting 50-200 ms) when a short pulse (10-50 ms duration) of KCl was ejected from the tip of a micropipette that was placed within the cell's receptive field. When KCl was ejected successively from the tips of two micropipettes that were aligned along the preferred-null axis of a cell, sequence-dependent responses were observed. The response to the second micropipette was suppressed when mimicking motion in the cell's null direction, whereas an enhancement during apparent motion in the opposite direction frequently occurred. Sequence discrimination in these cells was eliminated by the GABA antagonist picrotoxin and by the Ca(2+)-channel blocker omega-conotoxin MVIIC, two drugs that are known to abolish directional selectivity in these ganglion cells. The spatiotemporal properties of the K(+)-evoked sequence-dependent responses are described and compared with previous findings on apparent motion responses of ON-OFF DS ganglion cells.  相似文献   

9.
We investigated the origin of the calretinin-immunoreactive fibers in the mouse superior colliculus. The dense plexus of calretinin-positive fibers in the superficial layers of the colliculus was completely eliminated after eye enucleation. Retrograde tracing combined with immunohistochemistry revealed many calretinin-positive small-to-medium retinal ganglion cells projecting to the colliculus. These results indicate that calretinin-containing ganglion cells are the source of this calcium-binding protein in the superficial layers of the superior colliculus.  相似文献   

10.
Retinal ganglion cells of the fish have the spontaneous capacity to regenerate after nerve crush, a phenomenon known to be facilitated by nerve growth factor (NGF). We have studied the high-affinity NGF receptor TrkA, during the regeneration of the tench (Tinca tinca L.) optic nerve, using immunocytochemical techniques. TrkA-like immunoreactivity increased during the regeneration of the retinal ganglion cells. The increase is followed by a change in the subcellular distribution from perinuclear in control cells to cytoplasmic and perinuclear in regenerating ones. This increase was observed when antibodies against the extracellular domain of TrkA were used; no changes in TrkA-like immunoreactivity were observed with antibodies against the intracellular domain of TrkA. We thus conclude that modulation of TrkA is involved in the regeneration of fish retinal ganglion cells.  相似文献   

11.
Employing retinal explants and retrograde transport techniques, we studied the formation of the arcuate fascicles by examining the growth of the central retina, the emergence of the adult fiber layer pattern, and the projections of retinal ganglion cells in the central and peripheral retina. Sixty days prior to foveal pit formation, the distance from the incipient fovea to the optic disk was equal to the adult, even though the retinal area was only 8% of the adult. Arcuate fibers, at this age, were observed to avoid the incipient fovea, with no fascicles and few axons projecting over this region. A small population of 15.2% of the ganglion cells located within 2 mm of the incipient fovea possessed an axon with an aberrant trajectory that wound around and projected 50 to several hundred microns away from the optic disk, compared to only 3% at other retinal locations. The incidence of disorder decreased with increasing fetal age, establishing mature values in late fetal periods. These findings suggest that the area of the central retina does not increase after embryonic day 60 and that guidance factors are present that allow outgrowing ganglion cell axons to distinguish and avoid that portion of the retina that will become the fovea.  相似文献   

12.
Whole-cell recordings were obtained from retinal ganglion cells of the tiger salamander (Ambystoma tigrinum) in a superfused slice preparation to evaluate contributions of NMDA (N-methyl-D-aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid) receptors to excitatory postsynaptic potentials (EPSPs) of retinal ganglion cells. Synaptic activation of retinal ganglion cells was achieved through the use of a brief pressure pulse of hyperosmotic Ringer (Ringer + sucrose) delivered through a microelectrode visually placed in the inner plexiform layer while whole-cell recordings were obtained from adjacent cells in the ganglion cell layer. Separation of NMDA and KA/AMPA excitatory postsynaptic currents (EPSCs) was achieved through the application of the antagonists NBQX and D-AP7, while inhibitory currents were blocked by strychnine and picrotoxin. Simple addition of the two independent EPSCs showed, most often, that the sum of the KA/AMPA and NMDA currents was less than the control response, but in some cases the sum of the two currents exceeded the magnitude of the control response. Neither result was consistent with expectations based on voltage-clamp principles and the assumption that the two currents were independent; for this reason, we considered the possibility of nonlinear interactions between KA/AMPA and NMDA receptors. Computer simulations were carried out to evaluate the summation experiments. We used both an equivalent cylinder model and a more realistic, compartmental model of a ganglion cell constrained by a passive leakage conductance, a linear KA/AMPA synaptic current, and a nonlinear NMDA current based on the well-known, voltage-sensitive Mg2+ block. Computer simulation studies suggest that the hypo- and hyper-summation of NMDA and KA/AMPA currents, observed physiologically, can be accounted for by a failure to adequately space clamp the neuron. Clamp failure leads to enhanced NMDA currents as the ion channels are relieved of the Mg2+ block; their contribution is thus exaggerated depending on the magnitude of the conductance change and the spatial location of the synaptic input.  相似文献   

13.
Structural basis for ON-and OFF-center responses in retinal ganglion cells   总被引:1,自引:0,他引:1  
The inner plexiform layer of the mammalian retina has a bisublaminar organization determined by restricted branching of the terminals of cone bipolar cells and dendrites of class I (large) and class II (small) ganglion cells. Comparison of dendritic field diameters and receptive fiedl center sizes of large ganglion cells suggests that neural circuitry in sublamina a conveys "OFF"-center properties and connections in sublamina b "ON"-center properties to retinal ganglion cells.  相似文献   

14.
The ganglion cells of the primate retina include two major anatomical and functional classes: P cells which project to the four parvocellular layers of the lateral geniculate nucleus (LGN), and M cells which project to the two magnocellular layers. The characteristics of the P-cell receptive field are central to understanding early form and color vision processing (Kaplan et al., 1990; Schiller & Logothetis, 1990). In this and in the following paper, P-cell dynamics are systematically analyzed in terms of linear and nonlinear response properties. Stimuli that favor either the center or the surround of the receptive field were produced on a CRT and modulated with a broadband signal composed of multiple m-sequences (Benardete et al., 1992b; Benardete & Victor, 1994). The first-order responses were calculated and analyzed in this paper (part I). The findings are: (1) The first-order responses of the center and surround depend linearly on contrast. (2) The dynamics of the center and surround are well described by a bandpass filter model. The most significant difference between center and surround dynamics is a delay of approximately 8 ms in the surround response. (3) In the LGN, these responses are attenuated and delayed by an additional 1-5 ms. (4) The spatial transfer function of the P cell in response to drifting sine gratings at three temporal frequencies was measured. This independent method confirmed the delay between the (first-order) responses of the center and surround. This delay accounts for the dependence of the spatial transfer function on the frequency of stimulation.  相似文献   

15.
Spontaneous and light-evoked postsynaptic currents (sPSCs and lePSCs, respectively) in retinal ganglion cells of the larval tiger salamander were recorded under voltage-clamp conditions from living retinal slices. The focus of this study is to characterize the spontaneous inhibitory PSCs (sIPSCs) and their contribution to the light-evoked inhibitory PSCs (leIPSCs) in ON-OFF ganglion cells. sIPSCs were isolated from spontaneous excitatory PSCs (sEPSCs) by application of 10 microM 6,7-dinitroquinoxaline-2,3-dione (DNQX) + 50 microM 2-amino-5-phosphonopentanoic acid (AP5). In approximately 70% of ON-OFF ganglion cells, bicuculline (or picrotoxin) completely blocks sIPSCs, suggesting all sIPSCs in these cells are mediated by GABAergic synaptic vesicles and gamma-aminobutyric acid-A (GABAA) receptors (GABAergic sIPSCs, or GABAsIPSCs). In the remaining 30% of - ganglion cells, bicuculline (or picrotoxin) blocks 70-98% of the sIPSCs, and the remaining 2-30% are blocked by strychnine (glycinergic sIPSCs, or GLYsIPSCs). GABAsIPSCs occur randomly with an exponentially distributed interval probability density function, and they persist without noticeable rundown over time. The GABAsIPSC frequency is greatly reduced by cobalt, consistent with the idea that they are largely mediated by calcium-dependent vesicular release. GABAsIPSCs in DNQX + AP5 are tetrodotoxin (TTX) insensitive, suggesting that amacrine cells that release GABA under these conditions do not generate spontaneous action potentials. The average GABAsIPSCs exhibited linear current-voltage relation with a reversal potential near the chloride equilibrium potential, and an average peak conductance of 319.67 +/- 252.83 (SD) pS. For GLYsIPSCs, the average peak conductance increase is 301.68 +/- 94.34 pS. These parameters are of the same order of magnitude as those measured in inhibitory miniature postsynaptic currents (mIPSCs) associated with single synaptic vesicles in the CNS. The amplitude histograms of GABAsIPSCs did not exhibit multiple peaks, suggesting that the larger events are not discrete multiples of elementary events (or quanta). We propose that each GABAsIPSC or GLYsIPSC in retinal ganglion cells is mediated by a single or synchronized multiple of synaptic vesicles with variable neurotransmitter contents. In a sample of 16 ON-OFF ganglion cells, the average peak leIPSC (held at 0 mV) at the light onset is 509.0 +/- 233.85 pA and that at the light offset is 529.0 +/- 339.88 pA. The approximate number of GABAsIPSCs and GLYsIPSCs required to generate the average light responses, calculated by the ratio of the charge (area under current traces) of the leIPSCs to that of the average single sIPSCs, is 118 +/- 52 for the light onset, and 132 +/- 76 for the light offset.  相似文献   

16.
Receptive-field properties of retinal ganglion cells (RGCs) that had regenerated their axons were studied by recording single-unit activity from strands teased from peripheral nerve (PN) grafts apposed to the cut optic nerve in adult cats. Of the 286 visually responsive units recorded from PN grafts in 20 cats, 49.7% were classified, according to their receptive-field properties, as Y-cells, 39.5% as X-cells, 6.6% as W-cells, and 4.2% were unclassified. The predominant representation of Y-cells is consistent with a corresponding morphological study (Watanabe et al. 1993a), which identified alpha-cells as the RGC type with the largest proportion of regenerating axons. Among the X-cells, we only found ON-center types, whereas both ON-center and OFF-center Y-cells were found. As in intact retinas, the receptive-field center sizes of Y-cells and W-cells were larger than those of X-cells at corresponding displacements from the area centralis. Within the 10 degrees surrounding the area centralis, the receptive fields of X-cells with regenerated axons were larger than those in intact retinas, suggesting that some rearrangement of retinal circuitry occurred as a consequence of degeneration and regeneration. Receptive-field center responses of Y-, X-, and W-type units with regenerated axons were similar to those found in intact retinas, but the level of spontaneous activity of Y- and X-type units was, in general, less than that of intact RGCs. Receptive-field surrounds were weak or not detected in more than half of the visually responsive RGCs with regenerated axons.  相似文献   

17.
PURPOSE: Knowledge of the mechanisms by which retinal ganglion cells are damaged may provide information required to develop novel treatments for diseases that cause retinal ganglion cell death. The authors investigated whether the expression of the 72-kDa heat shock protein in cultured rat retinal ganglion cells increases tolerance to hypoxic and excitotoxic injury. METHODS: Hyperthermia (42 degrees C for 1 hour) and sublethal hypoxia (9% O2 for 6 hours) were used to induce synthesis of the 72-kDa heat shock protein in cultured rat retinal ganglion cells and cultured retinal Müller cells. Induction of the 72-kDa heat shock protein was detected with immunocytochemical and immunoblot techniques. Survival of cultured retinal ganglion cells after exposure to anoxia (< 1% O2 for 6 hours) and glutamate (200 microns for 6 hours) was measured and compared to control cultures stressed previously by hyperthermia or sublethal hypoxia. The effect of quercetin, a blocker of heat shock protein synthesis, was evaluated in parallel experiments. RESULTS: Heat shock protein immunoreactivity was expressed in cultured retinal ganglion cells and Müller cells after hyperthermia and sublethal hypoxia. The mean (+/- standard deviation) retinal ganglion cell survival rates after exposure to anoxia (expressed as a percentage of untreated control cultures) in cells pretreated with sublethal hypoxia (83% +/- 17%) and hyperthermia (82% +/- 19%) were significantly greater than for cells that had no pretreatment (50% +/- 18%, P < 0.001). The mean (+/-standard deviation) retinal ganglion cell survival rate after exposure to glutamate in cells pretreated with sublethal hypoxia (82% +/- 19%) and hyperthermia (86% +/- 17%) were significantly greater than for cells that had no pretreatment (56% +/- 17%, P < 0.001). Inhibition of heat shock protein synthesis with quercetin abolished the protective effects of sublethal hypoxia and hyperthermia on cell survival after anoxia and glutamate exposure. CONCLUSIONS: The neuroprotective effect of hyperthermia and sublethal hypoxia suggests that heat shock proteins confer protection against ischemic and excitotoxic retinal ganglion cell death.  相似文献   

18.
Previous gain-of-function assays in Xenopus have demonstrated that Xwnt-3a can pattern neural tissue by reducing the expression of anterior neural genes, and elevating the expression of posterior neural genes. To date, no loss-of-function studies have been conducted in Xenopus to show a requirement of endogenous Wnt signaling for patterning of the neural ectoderm along the anteroposterior axis. We report that expression of a dominant negative Wnt in Xenopus embryos causes a reduction in the expression of posterior neural genes, and an elevation in the expression of anterior neural genes, thereby confirming the involvement of endogenous Wnt signaling in patterning the neural axis. We further demonstrate that the ability of Xwnt-3a to decrease expression of anterior neural genes in noggin-treated explants is dependent upon a functional FGF signaling pathway, while the elevation of expression of posterior neural genes does not require FGF signaling. The previously reported ability of FGF to elevate the expression of posterior neural genes in noggin-treated explants was found to be dependent on endogenous Wnt signaling. We conclude that neural induction occurs initially in a Wnt-independent manner, but that generation of complete anteroposterior neural pattern requires the cooperative actions of Wnt and FGF pathways.  相似文献   

19.
Perfringolysin O (theta-toxin) is a cholesterol-binding and pore-forming toxin that shares with other thiol-activated cytolysins a highly conserved sequence, ECTGLAWEWWR (residues 430-440), near the C-terminus. To understand the membrane-insertion and pore-forming mechanisms of the toxin, we evaluated the contribution of each Trp to the toxin conformation during its interaction with liposomal membranes. Circular dichroism (CD) spectra of Trp mutant toxins indicated that only Trp436 has a significant effect on the secondary structure, and that Trp436, Trp438, and Trp439 make large contributions to near-UV CD spectra. Quenching the intrinsic Trp fluorescence of the wild-type and mutant toxins with brominated lecithin/cholesterol liposomes revealed that Trp438 and probably Trp436, but not Trp439, contributes to toxin insertion into the liposomal membrane. Near-UV CD spectra of the membrane-associated mutant toxins indicated that both Trp438 and Trp439 are required for the CD peak shift from 292 to 300 nm, a signal related to theta-toxin oligomerization and/or pore formation, suggesting a conformational change around Trp438 and Trp439 in these processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号