首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concern regarding the toxicological effects of nanoparticles (NPs) on the terrestrial environment is increasing. To avoid risks of exposure to these NPs in the environment, it is essential to develop an understanding of their reactivity, toxicity, and persistency. Due to the increased usage of nano‐titanium dioxide (TiO2) in various industrial products, an exponential increase in exposure is expected, which would exacerbate concerns about its ecological risks. The present study is conducted to evaluate the size‐dependent effects of TiO2 NPs on the soil, especially on earthworm (Eudrilus euginiae). To date, many studies have been reported on the impact of TiO2 NPs on ecotoxicology. However, histotoxicology studies are sparse. This study serves to be the first report on the size‐dependent histotoxicological impact of nano‐TiO2 on earthworms particularly, E. euginiae. This report presents an intensive overall view of the longer time ecotoxicological impact of TiO2 nanomaterials on various biological parameters of earthworms at cellular levels. The results show that the survival and growth of adult earthworms are severely affected by the TiO2 NPs in the soil, which substantiates the adverse effects of TiO2 NPs on earthworms.Inspec keywords: nanobiotechnology, nanoparticles, titanium compounds, semiconductor materials, toxicology, zoology, soil, cellular biophysics, particle sizeOther keywords: toxicological impact, nanoparticles, Eudrilus euginiae, terrestrial environment, soil, earthworm, ecotoxicology, size‐dependent histotoxicological impact, nanomaterials, biological parameters, cellular levels, TiO2   相似文献   

2.
Abstract

The aim of this work is to prepare ultraviolet (UV) triggered controlled release of compounds from microcapsule systems (MCs). Polyurethane (PU) and poly(methyl methacrylate) (PMMA) microcapsules were studied with/without chemical functionalization using photocatalytic TiO2 nanoparticles (NPs) on their surface. Once TiO2 nanoparticles are illuminated with UV light (λ?=?370?nm), they initiate the rupture of the polymeric bonds of the microcapsule and subsequently initiate the encapsulated compound release, methotrexate (MTX) or rhodamine (Rh), in the present work. The size, polydispersity, charge, and yield of all MCs were measured, being the methotrexate drug release for all systems determined and compared with and without functionalization with TiO2 NPs, under dark, visible light and UV illumination in vitro. Finally, the Rh release was characterized using fluorescence microscopy. The TiO2 NPs size is around 10?nm, as determined by X-ray diffraction experiments. The PU MCs average size is around 60?µm, its electric charge +3.11?mV and yield around 85%. As for the PMMA MCs, the average size is around 280?µm, its electric charge ?7.2?mV and yield around 25% and 30% for both MTX and Rh, respectively. In general, adding TiO2 NPs or the encapsulated products to the MCs does not affect the size but functionalization with TiO2 NPs lowers the electric charge. Microcapsules functionalized with TiO2 nanoparticles and irradiated with UV light presented the highest release of MTX and Rh. All other samples showed lower drug release levels when studied under the same conditions.  相似文献   

3.
Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350–600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.   相似文献   

4.
In this study, electrospun nylon-6 spider-net like nanofiber mats containing TiO2 nanoparticles (TiO2 NPs) were successfully prepared. The nanofiber mats containing TiO2 NPs were characterized by SEM, FE-SEM, TEM, XRD, TGA and EDX analyses. The results revealed that fibers in two distinct sizes (nano and subnano scale) were obtained with the addition of a small amount of TiO2 NPs. In low TiO2 content nanocomposite mats, these nanofiber weaves were found uniformly loaded with TiO2 NPs on their wall. The presence of a small amount of TiO2 NPs in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved mechanical strength and UV blocking ability will also make it a potential candidate for protective clothing.  相似文献   

5.
This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.  相似文献   

6.
Copper oxide nanotubes decorated by TiO2 nanoparticles (CNTNs) were fabricated by simple three-step method. First, deposition of copper onto cellulose fibres, then thermal oxidation of copper and cellulose fibres and last simply mixing copper oxide nanotubes and TiO2 nanoparticles (NPs). Scanning electron microscopy, transmission electron microscopy and X-ray diffraction showed that the synthesised nanotubes were monoclinic-structured polycrystalline CuO with diameter and wall thickness of approximately 50~100 nm and 20~25 nm, respectively. Moreover, the diameter of the TiO2 NPs is about 20~30 nm. Optical properties of the solutions containing copper oxide nanotubes decorated by TiO2 NPs were studied. Discrete dipole approximation was used for the calculation of absorption, scattering and extinction cross sections of the deposited CNTNs on a glass substrate. Our simulation results show that there are good agreements between the experimental date and the simulation results. Moreover, the photocatalytic tests were done by methyl orange under visible light (λ = 633 nm) irradiation for prepared samples.  相似文献   

7.
The recent ban of titanium dioxide (TiO2) as a food additive (E171) in France intensified the controversy on safety of foodborne‐TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non‐obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short‐chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro‐inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non‐obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.  相似文献   

8.
Resistively switching devices are considered promising for next‐generation nonvolatile random‐access memories. Today, such memories are fabricated by means of “top–down approaches” applying thin films sandwiched between nanoscaled electrodes. In contrast, this work presents a “bottom–up approach” disclosing for the first time the resistive switching (RS) of individual TiO2 nanoparticles (NPs). The NPs, which have sizes of 80 and 350 nm, respectively, are obtained by wet chemical synthesis and thermally treated under oxidizing or vacuum conditions for crystallization, respectively. These NPs are deposited on a Pt/Ir bottom electrode and individual NPs are electrically characterized by means of a nanomanipulator system in situ, in a scanning electron microscope. While amorphous NPs and calcined NPs reveal no switching hysteresis, a very interesting behavior is found for the vacuum‐annealed, crystalline TiO2–x NPs. These NPs reveal forming‐free RS behavior, dominantly complementary switching (CS) and, to a small degree, bipolar switching (BS) characteristics. In contrast, similarly vacuum‐annealed TiO2 thin films grown by atomic layer deposition show standard BS behavior under the same conditions. The interesting CS behavior of the TiO2–x NPs is attributed to the formation of a core–shell‐like structure by re‐oxidation of the reduced NPs as a unique feature.  相似文献   

9.
Nanoparticles (NPs) elicit various physiological responses in cellular environment, and the effect of NPs on cell migration is of high interest. In this work, the effects of NPs on cell migration and their possible mechanisms were studied. Here, we showed that after exposure to pegylated titanium dioxide nanoparticles (TiO2-PEG NPs, where PEG stands for the polyethylene glycol), NCI-H292 cells exhibited slower migration than control cells. Furthermore, larger NPs inhibited cell migration much stronger than smaller NPs. Following NP exposure, the cells showed decreased expression of integrin beta 1 and phosphorylated focal adhesion kinase (pFAK), and disrupted F-actin structures. We demonstrated that a possible mechanism involved NP-mediated promotion of the lysosomal degradation of integrin beta 1, thus leading to reduced expression of pFAK and cytoskeletal disruption and inhibited cell migration. Therefore, our results showed that inhibition of NCI-H292 cell migration by NPs is mediated through integrin beta 1, which provides useful information for the application of NPs in cancer therapy and related fields.  相似文献   

10.
Titanium dioxide (TiO2) nanoparticles (NPs) are the important nanoscale components of composites. Although TiO2 NPs and their related nanocomposites have been widely used in industrial and medical applications, the adverse effects of TiO2 nanomaterials have not been well studied. Here, we investigated the cytotoxicity of TiO2 NPs in vitro using four liver cell lines: human hepatocellular carcinoma cell line (SMMC-7721), human liver cell line (HL-7702), rat hepatocarcinoma cell line (CBRH-7919) and rat liver cell line (BRL-3A). We checked cell viability, cell morphology, and the levels of reactive oxygen species (ROS) and glutathione (GSH) after TiO2 exposure at varying concentrations (0.1–100 μg/mL) and different exposure periods of time (12–48 h). Compared to the NP-free control, all four cell lines exposed to TiO2 NPs showed cytotoxicity in a dosage-dependent and time-dependent manner, which was associated with the changes of cell viability and cell morphology, increased intercellular ROS levels, and decreased intracellular GSH levels. Further, we observed that carcinomatous liver cells and human liver cells exhibited more tolerance to TiO2 NPs exposure for 24 h, compared to normal liver cells and rat liver cells, respectively. The results indicate that the in vitro cytotoxicity induced by NPs should be assessed with great caution before the use of nanocomposites and that there is a need to standardize the cytotoxicity testing procedure of nanoscale components in composites when using different cell lines.  相似文献   

11.
The photocatalytic performance of heterostructure photocatalysts is limited in practical use due to the charge accumulation at the interface and its low efficiency in utilizing solar energy during photocatalytic process. In this work, a ternary hierarchical TiO2 nanorod arrays/graphene/ZnO nanocomposite is prepared by using graphene sheets as bridge between TiO2 nanorod arrays (NRAs) and ZnO nanoparticles (NPs) via a facile combination of spin-coating and chemical vapor deposition techniques. The experimental study reveals that the graphene sheets provide a barrier-free access to transport photo-excited electrons from rutile TiO2 NRAs and ZnO NPs. In addition, there generates an interface scattering effect of visible light as the graphene sheets provide appreciable nucleation sites for ZnO NPs. This synergistic effect in the ternary nanocomposite gives rise to a largely enhanced photocurrent density and visible light-driven photocatalytic activity, which is 2.6 times higher than that of regular TiO2 NRAs/ZnO NPs heterostructure. It is expected that this hierarchical nanocomposite will be a promising candidate for applications in environmental remediation and energy fields.  相似文献   

12.
In this work, a colloidal suspension of trioctyl phosphine oxide/trioctyl phosphine (TOPO/TOP)-capped CdSe QD's of size ∼5 nm was prepared by chemical route and these QD's were anchored on the surface of sol-gel prepared nanoporous TiO2 layers in THF-ethanol solvent either by direct adsorption or with the aid of bi-functional linker molecule mercaptoacetic acid (MPA). The particle size estimation of both TiO2 and CdSe nanoparticles by X-ray diffraction (XRD) and transmission electron microscopic (TEM) measurements concur well with each other. Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) studies elucidate the signatures of TiO2, CdSe nanoparticles and linker which is also supported by the presence of contrasting images in TEM studies respectively. XPS depth-profiling measurements have been used as a probe to determine the chemical composition and structure of CdSe nanocrystals and CdSe-TiO2 nanocomposites respectively. The CdSe nanoparticles and CdSe-TiO2 nanocomposites formed by different routes are modeled, based on the observations of several complimentary techniques.  相似文献   

13.
The increasing number of nanoparticles (NPs) being used in various industries has led to growing concerns of potential hazards that NP exposure can incur on human health. However, its global effects on humans and the underlying mechanisms are not systemically studied. Human embryonic stem cells (hESCs), with the ability to differentiate to any cell types, provide a unique system to assess cellular, developmental, and functional toxicity in vitro within a single system highly relevant to human physiology. Here, the quantitative proteomics approach is adopted to evaluate the molecular consequences of titanium dioxide NPs (TiO2 NPs) exposure in hESCs. The study identifies ≈328 unique proteins significantly affected by TiO2 NPs exposure. Proteomics analysis highlights that TiO2 NPs can induce DNA damage, elevated oxidative stress, apoptotic responses, and cellular differentiation. Furthermore, in vivo analysis demonstrates remarkable reduction in the ability of hESCs in teratoma formation after TiO2 NPs exposure, suggesting impaired pluripotency. Subsequently, it is found that TiO2 NPs can disrupt hESC mesoderm differentiation into cardiomyocytes. The study unveils comprehensive changes in the molecular landscape of hESCs by TiO2 NPs and identifies the impact which TiO2 NPs can have on the pluripotency and differentiation properties of human stem cells.  相似文献   

14.
Water-soluble anatase, mixed-phase (anatase and rutile) and rutile TiO2 nanoparticles (NPs) or nanorods were synthesized under mild solution conditions using polyethylene glycol 400 (PEG 400) as a stabilizer and HCl as a phase controlling reagent. The photocatalytic properties of these NPs with different crystal phases were evaluated by photocatalytic degradation experiments of methyl orange (MO). As-prepared pure anatase TiO2 NPs show a higher photocatalytic activity than other samples and commercial P25, which may be related to the high crystallinity, the pure anatase phase, small size and the enhanced absorbability associated with the existence of PEG 400 on the NP surface.  相似文献   

15.
Titania (TiO2) nanorods (NRs) and nanoparticles (NPs) were synthesized using oleic acid as a surfactant and employed as photoanodes for dye sensitized solar cell (DSSC) fabrication. The synthesized NRs and NPs were characterized using transmission electron microscopy and X-ray diffraction. The photovoltaic performances were compared between NRs, NPs, and their composites. The results showed that the power conversion efficiencies (η) of the composites depend on the relative compositions of NRs and NPs in photoanodes, reaching the greatest at 10% NR content. η of the pure NRs DSSC was lower than that of the NPs DSSC. Electrochemical impedance spectroscopy revealed that the highest η at 10% NRs is mainly due to reduced charge transport resistance at the TiO2/dye/electrolyte interface and electrolyte diffusion resistance, overcoming the reduction of the number of adsorbed dye molecules.  相似文献   

16.
In this study, the endogenous lipid signalling molecules, N ‐myristoylethanolamine, were explored as a capping agent to synthesise stable silver nanoparticles (AgNPs) and Ag sulphide NPs (Ag2 S NPs). Sulphidation of the AgNPs abolishes the surface plasmon resonance (SPR) maximum of AgNPs at 415 nm with concomitant changes in the SPR, indicating the formation of Ag2 S NPs. Transmission electron microscopy revealed that the AgNPs and Ag2 S NPs are spherical in shape with a size of 5–30 and 8–30 nm, respectively. AgNPs and Ag2 S NPs exhibit antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The minimum inhibitory concentrations (MIC) of 25 and 50 μM for AgNPs and Ag2 S NPs, respectively, were determined from resazurin microtitre plate assay. At or above MIC, both AgNPs and Ag2 S NPs decrease the cell viability through the mechanism of membrane damage and generation of excess reactive oxygen species.Inspec keywords: cellular biophysics, biomembranes, transmission electron microscopy, nanomedicine, microorganisms, molecular biophysics, antibacterial activity, nanofabrication, silver, biomedical materials, surface plasmon resonance, nanoparticles, materials preparation, silver compounds, lipid bilayersOther keywords: Gram‐negative bacteria, Gram‐positive bacteria, endogenous lipid signalling molecules, N‐myristoylethanolamine, capping agent, silver nanoparticles, Ag sulphide NPs, sulphidation, surface plasmon resonance, concomitant changes, transmission electron microscopy, minimum inhibitory concentrations, resazurin microtitre plate assay, cell viability, membrane damage, reactive oxygen species, Ag toxicities, Ag, Ag2 S  相似文献   

17.
The authors'' previous study showed that zirconium oxide nanoparticles (ZrO2 NPs) induce toxic effects in MC3T3‐E1 cells; however, its toxicological mechanism is still unclear. Liquid chromatography–mass spectrometry/time‐of‐flight mass spectrometry was used to reveal the metabolite profile and toxicological mechanism of MC3T3‐E1 cells in response to ZrO2 NPs. The results demonstrated that MC3T3‐E1 cells treated with ZrO2 NPs for 24 and 48 h presented different metabolic characteristics. Following ZrO2 NP treatment for 24 h, 96 upregulated and 129 downregulated metabolites in the positive ion mode, as well as 91 upregulated and 326 downregulated metabolites in the negative ion mode were identified. Following ZrO2 NP treatment for 48 h, 33 upregulated and 174 downregulated metabolites were identified in the positive ion mode, whereas 37 upregulated and 302 downregulated metabolites were confirmed in the negative ion mode. Among them, 42 differential metabolites were recognised as potential metabolites contributing to the induced toxic effects of ZrO2 NPs in MC3T3‐E1 cells. Most of the differential metabolites were lysophosphatidylcholine and lysophosphatidylethanolamide, indicating that exposure to ZrO2 NPs may have a profound impact on human cellular function by impairing the membrane system. The results also provide new clues for the toxicological mechanism of ZrO2 NP dental materials.  相似文献   

18.
Metal organic frameworks (MOFs)‐derived porous carbon is proposed as a promising candidate to develop novel, tailorable structures as polysulfides immobilizers for lithium–sulfur batteries because of their high‐efficiency electron conductive networks, open ion channels, and abundant central ions that can store a large amount of sulfur and trap the easily soluble polysulfides. However, most central ions in MOFs‐derived carbon framework are encapsulated in the carbon matrix so that their exposures as active sites to adsorb polysulfides are limited. To resolve this issue, highly dispersed TiO2 nanoparticles are anchored into the cobalt‐containing carbon polyhedras that are converted from ZIF‐67. Such a type of TiO2 and Co nanoparticles‐decorated carbon polyhedras (C? Co/TiO2) provide more exposed active sites and much stronger chemical trapping for polysulfides, hence improving the sulfur utilization and enhancing reaction kinetics of sulfur‐containing cathode simultaneously. The sulfur‐containing carbon polyhedras decorated with TiO2 nanoparticles (S@C? Co/TiO2) show a significantly improved cycling stability and rate capability, and deliver a discharge capacity of 32.9% higher than that of TiO2‐free S@C? Co cathode at 837.5 mA g?1 after 200 cycles.  相似文献   

19.
A ZnO nanorods (NRs)/TiO2 nanoparticles (NPs) film has been prepared by electrochemical deposition of ZnO NRs growth on P25 TiO2 NPs film surfaces. It was found that ZnO NRs/TiO2 NPs could significantly improve the efficiency of dye-sensitized solar cells owing to its relatively enhanced light-scattering capability and efficient charge transport efficiency. The overall energy-conversion efficiency (η) of 3.48 % was achieved by the formation of ZnO NRs/TiO2 NPs film, which is 33 % higher than that formed by TiO2 NPs alone (η = 2.62 %). The charge recombination behavior of cells was investigated by electrochemical impedance spectra, and the results showed that ZnO NRs/TiO2 NPs film has the longer electron lifetime than TiO2 NPs alone, which could facilitate the reduction of recombination processes and thus would promote the photocatalysis and solar cell performance.  相似文献   

20.

Pristine ZnO, Al-doped ZnO, and TiO2 coated ZnO nanoparticles (NPs) were synthesized by the wet chemical precipitation technique. All the synthesized NPs were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy. XRD analysis of pristine ZnO and Al-doped ZnO NPs revealed the hexagonal wurtzite structure with P63mc space group with no secondary phases and impurities. FESEM micrographs also depicted hexagonal grains with well-defined grain boundaries. TEM images showed hexagonal polyhedral shape for pure ZnO NPs and spherical shape dominating polyhedral particle for Al-doped ZnO NPs, and pseudospherical particles for TiO2 coated ZnO NPs. Energy-dispersive X-ray spectroscopy of Al-doped ZnO indicates the eminent exchange of dopant in the lattice site of Zn. Dielectric Studies reveal the highest value of the dielectric constant and lowest value of dielectric loss for Al-doped ZnO as compared to pure and TiO2-coated ZnO NPs. Suggesting Al-doped ZnO to be used as a dielectric material that can serve as a basic building block of the energy storage devices such as dielectric capacitor. TiO2-coated ZnO NPs demonstrated higher AC conductivity in comparison to pure ZnO and Al-doped ZnO NPs suggesting their use as a conductive nanofiller materials in a polymer-based nanocomposite to achieve higher energy density.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号