首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mn和V对TiAl金属间化合物在900℃(Na,K)2SO4熔盐中热腐蚀行为的影响有所不同.TiAl合金中加入Mn后,最外层的腐蚀产物为以Al2O3为主、另有少量TiO2的混合物;内层是Al,Ti和Mn的混合氧化物以及Ti的硫化物.加Mn在一定程度上减弱了TiAl合金的耐蚀性TiAl和TiAl-Mn合金中加入V后耐蚀性明显变差,最外层腐蚀产物以TiO2为主,并含有少量Al2O3和微量的V2O5,腐蚀层中的V2O5引起Al2O3的酸性溶解,因而不能形成保护性的Al2O3层,形成的TiO2和Al2O3混合膜的黏附性差,较易剥落。  相似文献   

2.
Cu-Al-B2O3-TiO2粉末机械合金化   总被引:11,自引:1,他引:10  
利用XRD ,SEM和DTA等方法分析了Cu Al B2 O3 TiO2 粉末在机械合金化过程中的结构变化。结果表明 :Cu Al B2 O3 TiO2 粉末通过机械合金化可以形成Cu(Ti,B)及Al2 O3 和少量的TiCu3 粉末 ,Al2 O3 是通过机械合金化过程中局部的自维持反应形成的 ,并且有 6~ 12h的孕育期。在所研究的体系中 ,先产生 4Al 3TiO2 =3Ti 2Al2 O3 的自维持反应 ,此反应诱发了随后的 2Al B2 O3 =2B Al2 O3 自维持反应。球磨过程中局部的自维持反应与普通的自蔓延反应有相似的一面 ,其不同点主要是点燃温度低 ,点燃位置多。  相似文献   

3.
以Al、TiO2、C为原材料,用接触反应法制备了TiC-Al2O3P/Al复合材料,采用XRD和SEM手段测定了材料的相组成、组织形貌及相分布,分析了碳含量对组织的影响。试验结果表明,该复合材料主要由分布于Al基体中的球状或近球状的TiC颗粒、不规则的Al2O3颗粒和少量的TiAl3组成,且随含碳量的增加,TiAl3减少;当C和TiO2比超过1.5后,TiAl3基本消失,但出现TiC2相。  相似文献   

4.
等离子喷涂纳米复合陶瓷涂层的组织结构及其形成机理   总被引:7,自引:0,他引:7  
以Al2O3-13%TiO2(质量分数)团聚体复合陶瓷粉末为材料,采用等离子喷涂工艺在TiAl合金表面制备纳米结构陶瓷涂层.用扫描电镜(SEM)和X射线衍射仪(XRD)分析粉末和涂层形貌、微观结构及相组成,讨论涂层的微观组织形成机理.结果表明:纳米结构复合陶瓷涂层由部分熔化区以及与常规等离子喷涂类似的片层状完全熔化区组成;根据组织结构的不同,部分熔化区又分为液相烧结区(亚微米Al2O3粒子镶嵌在TiO2基质相的三维网状或骨骼状结构)和固相烧结区(经过一定程度长大但仍保持在纳米尺度的残留纳米粒子);等离子喷涂使部分α-Al2O3以及全部θ-Al2O3转变为亚稳态γ-Al2O3;纳米结构复合陶瓷涂层中的完全熔化区、液相烧结区及固相烧结区分别由等离子喷涂过程中纳米团聚体粉末中温度高于Al2O3熔点、介于TiO2熔点到Al2O3熔点之间以及低于TiO2熔点区域沉积获得,纳米结构涂层中不同部分熔化组织源于复合陶瓷粉末中Al2O3与TiO2之间的熔点差异.  相似文献   

5.
实验室条件下制备了Ti-47Al-2Cr-2Nb-xTiB2(x=0、0.6%、1.0%,体积分数)合金熔体与Al2O3陶瓷型壳的界面反应层。借助SEM、EDS、XRD以及显微硬度测量等手段,对3种TiAl基合金熔体与Al2O3陶瓷型壳的界面反应情况进行了分析和比较。结果表明,TiAl基合金中加入TiB2,能有效减少TiAl基合金熔体与Al2O3陶瓷型壳的界面反应。TiAl基合金与AlO陶瓷型壳间的界面反应是一种不均衡进行的扩散型化学反应,并建立了界面反应的宏观模型。  相似文献   

6.
以Ti,Al,TiO2和Sm2O3为原料,利用原位合成法制备Al2O3/TiAl复合材料;并借助XRD、SEM和力学性能测试,研究Sm2O3掺杂对Al2O3/TiAl复合材料微观结构和力学性能的影响。结果表明:掺杂Sm2O3的Al2O3/TiAl复合材料由γ-TiAl/α2-Ti3Al基体相以及Al2O3、SmAl增强相组成;掺杂Sm2O3细化了复合材料的微观结构,改善了TiAl复合材料的力学性能;当Sm含量为5%(质量分数)时,该复合材料的弯曲强度和断裂韧性达到最大,分别为658.9MPa和10.13MPa·m1/2。  相似文献   

7.
Nb2O5掺杂原位合成Al2O3/TiAl复合材料的组织与性能   总被引:3,自引:2,他引:1  
以Ti、Al、TiO2和Nb2O5混合粉原位反应合成Al2O3/TiAl复合材料.借助差热分析探讨体系的反应过程,并对合成产物的微观结构和力学性能进行研究.结果表明:由于铝热反应释放了大量热量导致体系内温度较高,反应较早进行,利于实现低温致密化烧结.1200℃烧成后获得了γ ((α2/γ)双相组织.Nb2O5的加入细化了复相组织,提高了自生Al2O3颗粒的分散度及产物的致密度.加入适量Nn2O5后,复合材料的维氏硬度、抗弯强度和断裂韧性得到不同程度的提高;在Nb2O5掺杂量为6wt%时,硬度达到4.84GPa,抗弯强度为642MPa,断裂韧性达6.69 MPa·m1/2.复合材料的强化机制主要是由于Nb205的加入改善了复合材料的微观组织和使得Al2O3呈弥散分布.  相似文献   

8.
在温度为1150~1300℃的冰晶石熔体中,以TiO2为原料、Al为还原剂,制得了含Ti为7.83%~11.80%(质量百分数)的Al-Ti中间合金。讨论了温度、Al2O3加入量及搅拌等参数对Al-Ti合金中Ti含量的影响。研究发现,在石墨坩埚内还原的Al-Ti中间合金,Ti主要以TiAl3和TiC的形式存在;冰晶石熔体中TiO2的添加量相对于金属Al过剩时,会产生爬壁现象。  相似文献   

9.
利用XRD,SEM,EDS及TEM对TiAl/TiB2复合材料在静止空气中高温氧化后的氧化膜结构及其形成机制进行了研究。结果表明:TiAl/TiB2复合材料的氧化膜主要由TiO2外层与由TiO2和Al2O3混合内层构成。TiO2和Al2O3混合内层为孔洞较多的疏松状结构。TiO2外层亦可分为内外两层,TiO2的内层部分存在一些与TiB2的轮廓相似的“孔洞”,TiO2的外层部分没有此类孔洞。由于TiAl/TiB2复合材料中的TiB2被氧化后生成的B2O3在高温下蒸发掉,使氧化膜中TiB2所处的位置留下了孔洞。因此,氧化膜中的部分孔洞是由于TiB2被氧化后产生的;氧化温度达到1000℃时,TiAl/TiB2复合材料中的TiB2使氧化膜中的孔洞数量增加,复合材料的抗氧化性能急剧下降。  相似文献   

10.
TiAl合金激光熔覆复合材料涂层的高温抗氧化性能研究   总被引:4,自引:1,他引:4  
利用预涂NiCr-Cr3C2复合粉末对γ-TiAl合金(简称TiAl合金)进行激光熔覆处理,制得了以Cr7C3、TiC硬质相为耐磨增强相,以γ-NiCrAl镍基固溶体为基体的复合材料涂层,研究了原始TiAl合金和激光熔覆涂层的高温(1000℃)恒温氧化性能。结果表明:激光熔覆复合材料涂层在1000℃恒温氧化条件下具有较好的抗氧化性能,氧化层结构较连续致密,在组成上主要由Al2O3、Cr2O3和TiO2组成,原始TiAl合金的高温氧化产物表层主要由脆性疏松的TiO2组成,而亚表层则为(TiO2+α—Al2O3)的混合氧化物,表现出较差的高温抗氧化性能。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号