共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
模糊多准则决策方法研究综述 总被引:13,自引:2,他引:13
模糊多准则决策是当前决策领域的一个研究热点,在实际决策中有着广泛的应用.为此,介绍了基于模糊数、直觉模糊集和Vague集的多准则决策方法和语言多准则决策方法的研究现状,定义了直觉梯形模糊数和区间直觉梯形模糊数,扩展了模糊数和直觉模糊集.最后探讨了目前模糊多准则决策要解决的问题和发展方向. 相似文献
3.
在设计分散控制系统时,输入输出(IO)变量配对是一个重要的步骤.同时考虑系统的稳态增益和动态特性,提出一种新的关联度量方法进行IO 配对.在时域内基于传递函数的阶跃响应,其物理意义比较明确,并进一步结合了相对关联阵列(RIA)的优点.通过实例研究和与其他方法的对比表明,所提出的方法能较好地给出配对方案.
相似文献4.
5.
6.
多机器人覆盖技术研究进展 总被引:4,自引:0,他引:4
系统地总结了当前覆盖问题的定义、分类和应用前景.对多机器人覆盖中关于通信、环境地图、路径规划算法及效果评价等方面的研究进展情况进行了阐述.分析并指出若干多机器人覆盖研究中的重点和难点问题:体系结构、通信技术、协商协作、地图表示、路径规划及效果评价,并对未来的研究发展方向进行了探讨. 相似文献
7.
8.
9.
10.
11.
A fuzzy logic based supervisory hierarchical control scheme for real time pressure control 总被引:1,自引:4,他引:1
This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods. 相似文献
12.
Operation aim of ball mill grinding process is to control grinding particle size and circulation load to ball mill into their objective limits respectively, while guaranteeing producing safely and stably. The grinding process is essentially a multi-input multi-output system (MIMO) with large inertia, strong coupling and uncertainty characteristics. Furthermore, being unable to monitor the particle size online in most of concentrator plants, it is difficult to realize the optimal control by adopting traditional control methods based on mathematical models. In this paper, an intelligent optimal control method with two-layer hierarchical construction is presented. Based on fuzzy and rule-based reasoning (RBR) algorithms, the intelligent optimal setting layer generates the loops setpoints of the basic control layer, and the latter can track their setpoints with decentralized PID algorithms. With the distributed control system (DCS) platform, the proposed control method has been built and implemented in a concentration plant in Gansu province, China. The industrial application indicates the validation and effectiveness of the proposed method. 相似文献
13.
14.
磨矿过程磨机负荷的智能监测与控制 总被引:3,自引:1,他引:3
磨机过负荷是磨矿过程的常见故障工况, 如果不及时、准确处理, 就会造成磨矿产品质量变坏甚至磨矿生产的停顿. 采用规则推理(RBR)和统计过程控制(SPC)技术, 提出了由SPC机制、过负荷监测模块和监督控制器构成的磨机负荷智能监测与控制方法. 该方法通过对磨机过负荷的智能监测与诊断, 由监督控制器自动修改控制回路的设定值, 通过控制回路的输出跟踪修改后的设定值, 使磨机负荷逐渐远离过负荷状态. 工业应用表明, 该方法能够实现磨矿生产的安全、稳定和连续运行. 相似文献
15.
针对应急救援演练控制的复杂性和难以量化问题,为实现多人参演系统的有效控制,基于分析分层过程法(analytic hierarchy process,AHP),建立一种模糊粗糙集知识测度的综合建模方法.首先,分析模糊粗糙集各类知识测度相关概念、相互联系和各自特点,通过AHP方法,建立模糊规则的分层度量模型并给出了对比矩阵的构造示例,对模糊规则进行更加精细的度量.其次,在分析应急演练知识构成的基础上,提出预案知识提取和模糊关系粗糙集的构建方法;设计了演练过程控制流程和基于本文知识综合测度方法形成的核心控制流程;通过对规则重要性排序,提高规则判别精度,提供规则选择的手段和一种规则冲突消解方法.最终,通过一个简单案例,验证了本文所提的研究工作的可行性. 相似文献
16.
17.
Intelligent process control using neural fuzzy techniques 总被引:14,自引:0,他引:14
In this paper, we combine the advantages of fuzzy logic and neural network techniques to develop an intelligent control system for processes having complex, unknown and uncertain dynamics. In the proposed scheme, a neural fuzzy controller (NFC), which is constructed by an equivalent four-layer connectionist network, is adopted as the process feedback controller. With a derived learning algorithm, the NFC is able to learn to control a process adaptively by updating the fuzzy rules and the membership functions. To identify the input–output dynamic behavior of an unknown plant and therefore give a reference signal to the NFC, a shape-tunable neural network with an error back-propagation algorithm is implemented. As a case study, we implemented the proposed algorithm to the direct adaptive control of an open-loop unstable nonlinear CSTR. Some important issues were studied extensively. Simulation comparison with a conventional static fuzzy controller was also performed. Extensive simulation results show that the proposed scheme appears to be a promising approach to the intelligent control of complex and unknown plants, which is directly operational and does not require any a priori system information. 相似文献
18.
19.
未知参数多变量线性系统自适应模糊广义预测控制 总被引:2,自引:0,他引:2
对未知参数多变量线性系统提出了自适应模糊广义预测控制方法.该方法直接用模糊逻辑系统组成的向量设计广义预测控制器,并基于广义误差向量估计值对控制器中的未知向量和广义误差估计值中的未知矩阵进行白适应调整.该方法不但能保证闭环系统所有信号有界,而且可使广义误差向量收敛到原点的一个邻域内. 相似文献