首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Long-channel Ge pMOSFETs and nMOSFETs were fabricated with high-kappa CeO2/HfO2/TiN gate stacks. CeO2 was found to provide effective passivation of the Ge surface, with low diode surface leakage currents. The pMOSFETs showed a large I ON/IOFF ratio of 106, a subthreshold slope of 107 mV/dec, and a peak mobility of approximately 90 cm2 /Vmiddots at 0.25 MV/cm. The nMOSFET performance was compromised by poor junction formation and demonstrated a peak mobility of only ~3 cm2/Vmiddots but did show an encouraging ION/I OFF ratio of 105 and a subthreshold slope of 85 mV/dec  相似文献   

2.
MOSFETs incorporating ZrO2 gate dielectrics were fabricated. The IDS-VDS, IDS-VGS , and gated diode characteristics were analyzed to investigate the ZrO2/Si interface properties. The interface trap density (D it) was determined to be about 7.4times1012 cm -2middoteV-1 using subthreshold swing measurement. The surface-recombination velocity (s0) and the minority carrier lifetime in the field-induced depletion region (tau 0,FIJ) measured from the gated diodes were about 3.5times10 3 cm/s and 2.6times10-6 s, respectively. The effective capture cross section of surface state (sigmas) was determined to be about 5.8times10-16 cm2 using the gated diode technique and the subthreshold swing measurement. A comparison with conventional MOSFETs using SiO2 gate oxides was also made  相似文献   

3.
SiGe MOS器件SiO2栅介质低温制备技术研究   总被引:1,自引:0,他引:1  
为了获得电学性能良好的SiGe PMOS SiO2栅介质薄膜,采用等离子增强化学汽相沉积(PECVD)工艺,对低温300℃下薄膜制备技术进行了研究。实验表明,采用适当高温、短时间对PECVD薄膜退火有助于降低薄膜中电荷密度和界面态密度。该技术用于SiGe PMOSdgrm,在300K常温和77K低温下,其跨导分别达到45mS/mm和92.5mS/mm(W/L=20μm/2μm).  相似文献   

4.
A Ge-stabilized tetragonal ZrO2 (t-ZrO2) film with permittivity (κ) of 36.2 was formed by depositing a ZrO2/Ge/ZrO2 laminate and a subsequent annealing at 600 °C, which is a more reliable approach to control the incorporated amount of Ge in ZrO2. On Si substrates, with thin SiON as an interfacial layer, the SiON/t-ZrO2 gate stack with equivalent oxide thickness (EOT) of 1.75 nm shows tiny amount of hysteresis and negligible frequency dispersion in capacitance-voltage (C-V) characteristics. By passivating leaky channels derived from grain boundaries with NH3 plasma, good leakage current of 4.8 × 10−8 A/cm2 at Vg = Vfb − 1 V is achieved and desirable reliability confirmed by positive bias temperature instability (PBTI) test is also obtained.  相似文献   

5.
Electron paramagnetic resonance (EPR) measurements have been made on a variety of commercially available samples of the monoclinic form of the high-dielectric constant (high k) materials ZrO2 and HfO2 with the aim of characterizing the defects they contain. All EPR measurements were at about 9.5 GHz and at room temperature. An axially symmetric spectrum with g=1.961(2), g=1.976(2) is observed in most of the ZrO2 samples and a similar one with g=1.940(3), g=1.970(2) is seen for most of the HfO2 samples; they are attributed to centres involving Zr3+and Hf 3+, respectively. Their average concentration lies in the approximate range 1015–1017 cm−3, depending on the product specification, and, with one exception is unaffected by γ-irradiation. Grinding granules to powder and/or γ-irradiation yields further EPR spectra of defects, some of which are likely to involve oxygen, those are probably in the near surface region.  相似文献   

6.
Fluorine passivation in poly-Si/TaN/HfO2/p-Si and poly-Si/TaN/HfSiON/HfO2/p-Si gate stacks with varying TaN thickness through gate ion implantation has been studied. It has been found that when TaN thickness was less than 15 nm, mobility and subthreshold swing improved significantly in HfO2 nMOSFETs; while there was little performance improvement in HfSiON/HfO2 nMOSFETs due to the blocking of F atoms by the HfSiON layer in gate dielectrics, as has been proved by the electron energy loss spectroscopy mapping  相似文献   

7.
The impact of various rapid thermal annealing used during the integration on the La2O3/HfO2 and HfO2/La2O3 stacks deposited by Atomic Layer deposition was analyzed. The consequences of lanthanum localization in such stacks on the evolution of the films during the rapid thermal annealing are investigated in term of morphology, crystalline structure, silicate formation and film homogeneity as a function of the depth. It appeared that the La2O3 location has an impact on the temperature of the quadratic phase formation which could be linked to the formation of SiOHfLa silicate and the resistance of the films to dissolution in HF 0.05 wt%.  相似文献   

8.
Spatial Distributions of Trapping Centers in HfO2/SiO2 Gate Stack   总被引:1,自引:0,他引:1  
An analysis methodology for charge pumping (CP) measurements was developed and applied to extract spatial distributions of traps in SiO 2/HfO2 gate stacks. This analysis indicates that the traps accessible by CP measurements in the frequency range down to a few kilohertz are located primarily within the SiO2 layer and HfO2/SiO2 interface region. The trap density in the SiO2 layer increases closer to the high-kappa dielectric, while the trap spatial profile as a function of the distance from the high-kappa film was found to be dependent on high-kappa film characteristics. These results point to interactions with the high-kappa dielectric as a cause of trap generation in the interfacial SiO2 layer  相似文献   

9.
In this paper, the threshold voltage instability characteristics of HfO2 high-k dielectric are discussed. The results from various stress bias conditions including DC and AC with variations of frequency, duty cycle, and polarity provide additional insights into the intrinsic behavior and the trapping dynamics of high-k materials. A reduced threshold voltage shift was observed at higher frequency and lower duty cycle under AC positive unipolar stress compared to DC stress. Similarly, the degradation of maximum transconductance was also reduced with AC stress. However, subthreshold swing changes were found to be negligible and fairly independent of stress frequencies and duty cycles under AC positive unipolar stress.When different polarity of stress, such as positive, negative, and bipolar stress was applied, it was observed that frequency and duty cycle dependencies were still valid in all three conditions. In contrast to positive stress, negative stress showed a decrease in the threshold voltage shift. Bipolar stress resulted in the highest threshold voltage instability, but the degradation in transconductance and subthreshold swing was actually smaller than those in negative unipolar stress. The bulk trap of HfO2 dielectric, which is proportional to its physical thickness, is believed to be the primary factor for threshold voltage shift. AC unipolar operation would allow a higher 10-year lifetime operating voltage than the DC condition. In addition to experimental results, a plausible mechanism has been proposed.  相似文献   

10.
邹霁玥  汪礼胜 《微电子学》2020,50(4):564-568
比较研究了HfO2与HfLaO栅介质多层MoS2场效应晶体管。实验结果表明,与HfO2栅介质MoS2晶体管相比,HfLaO栅介质MoS2晶体管表现出更优的电性能。电流开关比高达1×108,亚阈斜率低至76 mV/dec,界面态密度低至1.1×1012 cm-2·eV-1,载流子场效应迁移率高达1×109 cm2·V-1·s-1。性能改善的原因在于镧(La)对HfO2的掺杂形成HfLaO化合物,减小栅介质薄膜的表面粗糙度,降低缺陷电荷密度,改善了栅介质/沟道界面特性,从而减小了界面态密度,抑制了库仑散射和界面粗糙散射。最终,提高了多层MoS2晶体管的场效应迁移率,改善了晶体管的亚阈特性。  相似文献   

11.
The low-frequency noise of pMOSFETs fabricated in epitaxial germanium-on-silicon substrates is studied. The gate stack consists of a TiN/TaN metal gate on top of a 1.3-nm equivalent oxide thickness HfO2/SiO2 gate dielectric bilayer. The latter is grown by chemical oxidation of a thin epitaxial silicon film deposited to passivate the germanium surface. It is shown that the spectrum is of the 1/fgamma type, which obeys number fluctuations for intermediate gate voltage overdrives. A correlation between the low-field mobility and the oxide trap density derived from the 1/f noise magnitude and the interface trap density obtained from charge pumping is reported and explained by considering remote Coulomb scattering  相似文献   

12.
薄膜SOI MOS器件阈值电压的解析模型分析   总被引:1,自引:0,他引:1  
研究了薄膜全耗尽增强型 SOIMOS器件阈值电压的解析模型 ,并采用计算机模拟 ,得出了硅膜掺杂浓度和厚度、正栅和背栅二氧化硅层厚度及温度对阈值电压影响的三维分布曲线 ,所得到的模拟结果和理论研究结果相吻合。  相似文献   

13.
The HfO2 high-k thin films have been deposited on p-type (1 0 0) silicon wafer using RF magnetron sputtering technique. The XRD, AFM and Ellipsometric characterizations have been performed for crystal structure, surface morphology and thickness measurements respectively. The monoclinic structured, smooth surface HfO2 thin films with 9.45 nm thickness have been used for Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures fabrication. The fabricated Al/HfO2/Si structure have been used for extracting electrical properties viz dielectric constant, EOT, barrier height, doping concentration and interface trap density through capacitance voltage and current-voltage measurements. The dielectric constant, EOT, barrier height, effective charge carriers, interface trap density and leakage current density are determined are 22.47, 1.64 nm, 1.28 eV, 0.93 × 1010, 9.25 × 1011 cm−2 eV−1 and 9.12 × 10−6 A/cm2 respectively for annealed HfO2 thin films.  相似文献   

14.
The electrical characteristics of a novel HfTaON/SiO2 gate stack, which consists of a HfTaON film with a dielectric constant of 23 and a 10-Aring SiO2 interfacial layer, have been investigated for advanced CMOS applications. The HfTaON/SiO2 gate stack provided much lower gate leakage current against SiO2 , good interface properties, excellent transistor characteristics, and superior carrier mobility. Compared to HfON/SiO2, improved thermal stability was also observed in the HfTaON/SiO2 gate stack. Moreover, charge-trapping-induced threshold voltage V th instability was examined for the HfTaON/SiO2 and HfON/SiO2 gate stacks. The HfTaON/SiO2 gate stack exhibited significant suppression of the Vth instability compared to the HfON/SiO2, in particular, for nMOSFETs. The excellent performances observed in the HfTaON/SiO2 gate stack indicate that it has the potential to replace conventional SiO2 or SiON as gate dielectric for advanced CMOS applications  相似文献   

15.
A novel device structure with a high-k HfO2 charge storage layer and dual tunneling layer (DTL) (SiO2/Si3N4) is presented in this paper. Combining advantages of the high trapping efficiency of high-k materials and enhanced charge injection from the substrate through the DTL, the device achieves a fast program/erase speed and a large memory window. The device demonstrates excellent retention due to its physically thick DTL and also improved endurance without any increase of programming Vth throughout the cyclic test as compared with SONOS Flash memory devices using an Si3N4 trapping layer.  相似文献   

16.
High-κ dielectrics are promising candidates to increase capacitor integration densities but their properties depend on manufacturing process and frequency because relaxation and resonance mechanisms occur. Complementary characterization protocols are needed to analyze high-κ insulator behaviour from DC to microwave frequencies. The extraction of Plasma Enhanced Atomic Layer Deposition HfO2 and ZrO2 complex permittivity was performed up to 5 GHz using dedicated test vehicles allowing an in situ characterization as a function of dielectric thickness. The measurement procedure was thus validated, highlighting the potentiality of these two dielectrics to cover a wide range of frequencies.  相似文献   

17.
In this work, the electrical properties of fresh and stressed HfO2/SiO2 gate stacks have been studied using a prototype of Conductive Atomic Force Microscope with enhanced electrical performance (ECAFM). The nanometer resolution of the technique and the extended current dynamic range of the ECAFM has allowed to separately investigate the effect of the electrical stress on the SiO2 and the HfO2 layer of the high-k gate stack. In particular, we have investigated this effect on both layers when the structures where subjected to low and high field stresses.  相似文献   

18.
The gate leakage current of HfO2 MOSFETs exhibits the power law characteristics after soft breakdown (BD) and the linear behavior after hard BD. Fast transient charge-trapping effect (FTCTE) shifts the inverter transfer characteristics but does not affect the high and low output voltages. The ring oscillator remains functional after gate BD. The BD position near the drain end of the n-channel transistor increases the noise figure (NF) significantly, whereas FTCTE has minor impact on the NF of the folded cascode low-noise amplifier  相似文献   

19.
Novel yttrium- and terbium-based interlayers (YIL and TbIL, respectively) on SiO2 and HfO2 gate dielectrics were employed for NMOS work function Phim modulation of undoped nickel fully silicided (Ni-FUSI) gate. Bandedge Ni-FUSI gate Phim of ~4.11 and ~4.07 eV was obtained by insertion of ultrathin (~1 nm) YIL and TbIL, respectively, on the SiO2 gate dielectric in a gate-first process (with 1000 degC anneal). NiSi Phim on SiO2 could also be tuned between the Si midgap and the conduction bandedge EC by varying the interlayer thickness. The achievement of NiSi Phim around 4.28 eV on the HfO2 gate dielectric using interlayer insertion makes this an attractive Phim modulation technique for Ni-FUSI gates on SiO2 and high-k dielectrics  相似文献   

20.
Current leakage and breakdown of MIM capacitors using HfO2 and Al2O3–HfO2 stacked layers were studied. Conduction in devices based upon HfO2 layers thinner than 8 nm is probably dominated by tunnelling. Al2O3–HfO2 stacked layers provide a limited benefit only in term of breakdown field. Constant-voltage wear-out of samples using insulating layer thicker than 6 nm is dominated by a very fast increase of the leakage current. A two step mechanism involving the generation of a conduction path followed by a destructive thermal effect is proposed to explain breakdown mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号