首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

2.
Motor proteins of the kinesin superfamily transport intracellular cargo along microtubules. Although different kinesin proteins share 30-50% amino-acid identity in their motor catalytic cores, some move to the plus end of microtubules whereas others travel in the opposite direction. Crystal structures of the catalytic cores of conventional kinesin (a plus-end-directed motor involved in organelle transport) and ncd (a minus-end-directed motor involved in chromosome segregation) are nearly identical; therefore, the structural basis for their opposite directions of movement is unknown. Here we show that the ncd 'neck' made up of 13 class-specific residues next to the superfamily-conserved catalytic core, is essential for minus-end-directed motility, as mutagenesis of these neck residues reverses the direction of ncd motion. By solving the 2.5 A structure of a functional ncd dimer, we show that the ncd neck (a coiled-coil) differs from the corresponding region in the kinesin neck (an interrupted beta-strand), although both necks interact with similar elements in the catalytic cores. The distinct neck architectures also confer different symmetries to the ncd and kinesin dimers and position these motors with appropriate directional bias on the microtubule.  相似文献   

3.
Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in these diseases.  相似文献   

4.
We have investigated the mechanism by which conventional kinesin is prevented from binding to microtubules (MTs) when not transporting cargo. Kinesin heavy chain (HC) was expressed in COS cells either alone or with kinesin light chain (LC). Immunofluorescence microscopy and MT cosedimentation experiments demonstrate that the binding of HC to MTs is inhibited by coexpression of LC. Association between the chains involves the LC NH2-terminal domain, including the heptad repeats, and requires a region of HC that includes the conserved region of the stalk domain and the NH2 terminus of the tail domain. Inhibition of MT binding requires in addition the COOH-terminal 64 amino acids of HC. Interaction between the tail and the motor domains of HC is supported by sedimentation experiments that indicate that kinesin is in a folded conformation. A pH shift from 7.2 to 6.8 releases inhibition of kinesin without changing its sedimentation behavior. Endogenous kinesin in COS cells also shows pH-sensitive inhibition of MT binding. Taken together, our results provide evidence that a function of LC is to keep kinesin in an inactive ground state by inducing an interaction between the tail and motor domains of HC; activation for cargo transport may be triggered by a small conformational change that releases the inhibition of the motor domain for MT binding.  相似文献   

5.
Kinesin, a plus-end-directed microtubule motor protein, functions in concert with accessory factors that have been shown to regulate enzyme activity and may also provide cargo specificity. This report identifies teh 79-kDa kinesin-associated phosphoprotein as a phosphoisoform of kinesin light chain. Increased phosphorylation of this light chain isoform is sufficient to account for the increase in kinesin-mediated microtubule-gliding activity. Additionally, it was found that the degree of phosphorylation of this isoform is regulated by a 100-kDa kinase and 150-kDa type 1 phosphatase. Both the kinesin light chain kinase and phosphatase co-purify with the kinesin heavy chain, suggesting that kinesin exists in a large complex capable of self-regulation.  相似文献   

6.
Conventional kinesin is a molecular motor consisting of an N-terminal catalytic motor domain, an extended stalk and a small globular C-terminus. Whereas the structure and function of the catalytic motor domain has been investigated, little is known about the function of domains outside the globular head. A short coiled-coil region adjacent to the motor domain, termed the neck, is known to be important for dimerization and may be required for kinesin processivity. We now provide evidence that a helix-disrupting hinge region (hinge 1) that separates the neck from the first extended coiled-coil of the stalk plays an essential role in basic motor activity. A fast fungal kinesin from Syncephalastrum racemosum was used for these studies. Deletion, substitution by a coiled-coil and truncation of the hinge 1 region all reduce motor speed and uncouple ATP turnover from gliding velocity. Insertion of hinge 1 regions from two conventional kinesins, Nkin and DmKHC, fully restores motor activity, whereas insertion of putative flexible linkers of other proteins does not, suggesting that hinge 1 regions of conventional kinesins can functionally replace each other. We suggest that this region is essential for kinesin movement in its promotion of chemo-mechanical coupling of the two heads and therefore the functional motor domain should be redefined to include not only the catalytic head but also the adjacent neck and hinge 1 domains.  相似文献   

7.
Kinesin and myosin have been proposed to transport intracellular organelles and vesicles to the cell periphery in several cell systems. However, there has been little direct observation of the role of these motor proteins in the delivery of vesicles during regulated exocytosis in intact cells. Using a confocal microscope, we triggered local bursts of Ca2+-regulated exocytosis by wounding the cell membrane and visualized the resulting individual exocytotic events in real time. Different temporal phases of the exocytosis burst were distinguished by their sensitivities to reagents targeting different motor proteins. The function blocking antikinesin antibody SUK4 as well as the stalk-tail fragment of kinesin heavy chain specifically inhibited a slow phase, while butanedione monoxime, a myosin ATPase inhibitor, inhibited both the slow and fast phases. The blockage of Ca2+/calmodulin-dependent protein kinase II with autoinhibitory peptide also inhibited the slow and fast phases, consistent with disruption of a myosin-actin- dependent step of vesicle recruitment. Membrane resealing after wounding was also inhibited by these reagents. Our direct observations provide evidence that in intact living cells, kinesin and myosin motors may mediate two sequential transport steps that recruit vesicles to the release sites of Ca2+-regulated exocytosis, although the identity of the responsible myosin isoform is not yet known. They also indicate the existence of three semistable vesicular pools along this regulated membrane trafficking pathway. In addition, our results provide in vivo evidence for the cargo-binding function of the kinesin heavy chain tail domain.  相似文献   

8.
Kinesin is the founding member of a superfamily of microtubule based motor proteins that perform force-generating tasks such as organelle transport and chromosome segregation. It has two identical approximately 960-amino-acid chains containing an amino-terminal globular motor domain, a central alpha-helical region that enables dimer formation through a coiled-coil, and a carboxy-terminal tail domain that binds light chains and possibly an organelle receptor. The kinesin motor domain of approximately 340 amino acids, which can produce movement in vitro, is much smaller than that of myosin (approximately 850 amino acids) and dynein (1,000 amino acids), and is the smallest known molecular motor. Here, we report the crystal structure of the human kinesin motor domain with bound ADP determined to 1.8-A resolution by X-ray crystallography. The motor consists primarily of a single alpha/beta arrowhead-shaped domain with dimensions of 70 x 45 x 45 A. Unexpectedly, it has a striking structural similarity to the core of the catalytic domain of the actin-based motor myosin. Although kinesin and myosin have virtually no amino-acid sequence++ identity, and exhibit distinct enzymatic and motile properties, our results suggest that these two classes of mechanochemical enzymes evolved from a common ancestor and share a similar force-generating strategy.  相似文献   

9.
BACKGROUND & AIMS: Ethanol is known to alter vesicle-mediated protein trafficking in hepatocytes by undefined mechanisms. In this study, the effects of long- and short-term ethanol exposure on vesicle movements were measured in isolated hepatocytes, and alterations in the function of the microtubule-associated motor enzymes dynamin, kinesin, and dynein, which are believed to support the transport and/or budding of vesicles along microtubules, were tested. METHODS: Vesicular movements in isolated hepatocytes exposed to short- and long-term ethanol treatment were measured. Motor adenosine triphosphatase activities and their association with specific membrane organelles were assessed in response to long-term administration of ethanol in vivo or acetaldehyde in vitro. RESULTS: Hepatocytes exposed to short- or long-term ethanol treatment showed a significant reduction in the number of motile vesicles. No alterations in the levels of motor messenger RNA, protein, or enzymatic activity were observed. Interestingly, ethanol had no effect on the association of dynein and kinesin with membranes, whereas there was a significant increase in the amount of dynamin associated specifically with Golgi membranes. CONCLUSIONS: Long- and short-term ethanol exposure markedly reduces hepatocellular vesicle transport by a mechanism apparently independent of any alteration in the enzymatic activity of molecular motors, possibly involving a change in the function of dynamin.  相似文献   

10.
AtKCBP is a calcium-dependent calmodulin-binding protein from Arabidopsis that contains a conserved kinesin microtubule motor domain. Calmodulin has been shown previously to bind to heavy chains of the unconventional myosins, where it is required for in vitro motility of brush border myosin I, but AtKCBP is the first kinesin-related heavy chain reported to be capable of binding specifically to calmodulin. Other kinesin proteins have been identified in Arabidopsis, but none of these binds to calmodulin, and none has been demonstrated to be a microtubule motor. We have tested bacterially expressed AtKCBP for the ability to bind microtubules to a glass surface and induce gliding of microtubules across the glass surface. We find that AtKCBP is a microtubule motor protein that moves on microtubules toward the minus ends, with the opposite polarity as kinesin. In the presence of calcium and calmodulin, AtKCBP no longer binds microtubules to the coverslip surface. This contrasts strikingly with the requirement of calmodulin for in vitro motility of brush border myosin I. Calmodulin could regulate AtKCBP binding to microtubules in the cell by inhibiting the binding of the motor to microtubules. The ability to bind to calmodulin provides an evolutionary link between the kinesin and myosin motor proteins, but our results indicate that the mechanisms of interaction and regulation of kinesin and myosin heavy chains by calmodulin are likely to differ significantly.  相似文献   

11.
Recently, the molecular structures of monomeric and dimeric kinesin constructs in complex with ADP have been determined by X-ray crystallography (Kull et al. 1996; Kozielski et al. 1997 a; Sack et al. 1997). The "motor" or "head" domains have almost identical conformations in the known crystal structures, yet the kinesin dimer is asymmetric: the orientation of the two heads relative to the coiled-coil formed by their neck regions is different. We used small angle solution scattering of kinesin constructs and microtubules decorated with kinesin in order to find out whether these crystal structures are of relevance for kinesin's structure under natural conditions and for its interaction with microtubules. Our preliminary results indicate that the crystal structures of monomeric and dimeric kinesin are similar to their structures in solution, though in solution the center-of-mass distance between the motor domains of the dimer could be slightly greater. The crystal structure of dimeric kinesin can be interpreted as representing two equivalent conformations. Transitions between these or very similar conformational states may occur in solution. Binding of kinesin to microtubules has conformational effects on both, the kinesin and the microtubule. Solution scattering of kinesin decorated microtubules reveals a peak in intensity that is characteristic for the B-surface lattice and that can be used to monitor the axial repeat of the microtubules under various conditions. In decoration experiments, dimeric kinesin dissociates, at least partly, leading to a stoichiometry of 1:1 (one kinesin head per tubulin dimer; Thorm?hlen et al. 1998a) in contrast to the stoichiometry of 2:1 reported for dimeric ncd. This discrepancy is possibly due to the effect of steric hindrance between kinesin dimers on adjacent binding sites.  相似文献   

12.
Here we examine the application of the cisternal/carrier maturation model to describe transport of cargo proteins from the Golgi apparatus to the plasma membrane. Interpretation of the available evidence in the light of carrier maturation suggests that the transport intermediates between these stations are large pleiomorphic carriers formed by maturation of the trans-Golgi compartment, rather than vesicles, as would be postulated by the vesicular shuttle model. Mature carriers move along microtubules towards the plasma membrane via a microtubule/(kinesin)-based motor system. The maturation and vesicular transport models are compared in terms of consistency with the available literature.  相似文献   

13.
The shapes of the motor domains of kinesin and ncd, which move in opposite directions along microtubules, have been investigated. Using proteins expressed in Escherichia coli, it was found that at high salt (> 200 mM) Drosophila ncd motor domain (R335-K700) and human kinesin motor domain (M1-E349) were both sufficiently monomeric to allow an accurate determination of their radii of gyration (Rg) and their molecular weights. The measured Rg values of the ncd and kinesin motor domains in D2O were 2.06 +/- 0.06 and 2.05 +/- 0.04 nm, respectively, and the molecular weights were consistent with those computed from the amino acid compositions. Fitting of the scattering curves to approximately 3.5 nm resolution showed that the ncd and kinesin motor domains can be described adequately by triaxial ellipsoids having half-axes of 1.42 +/- 0.38, 2.24 +/- 0.44, and 3.65 +/- 0.22 nm, and half-axes of 1.52 +/- 0.23, 2.00 +/- 0.25, and 3.73 +/- 0.10 nm, respectively. Both motor domains are described adequately as somewhat flattened prolate ellipsoids with a maximum dimension of approximately 7.5 nm. Thus, it appears that the overall shapes of these motor domains are not the major determinants of the directionality of their movement along microtubules.  相似文献   

14.
KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes-i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.  相似文献   

15.
Members of the kinesin superfamily share a similar motor catalytic domain yet move either toward the plus end (e.g., conventional kinesin) or the minus end (e.g., Ncd) of microtubules. The structural features that determine the polarity of movement have remained enigmatic. Here, we show that kinesin's catalytic domain (316 residues) in a dimeric construct (560 residues) can be replaced with the catalytic domain of Ncd and that the resultant motor moves in the kinesin direction. We also demonstrate that this chimera does not move processively over many tubulin subunits, which is similar to Ncd but differs from the highly processive motion of conventional kinesin. These findings reveal that the catalytic domain contributes to motor processivity but does not control the polarity of movement. We propose that a region adjacent to the catalytic domain serves as a mechanical transducer that determines directionality.  相似文献   

16.
The membranous outer segments of vertebrate photoreceptors are supported by cytoskeletons consisting of microtubules and associated proteins, which occur as the ciliary axoneme in rods and cones, and as a separate cytoskeletal system at the incisures of rod outer segments. We performed an immunocytochemical study of the cytoskeleton in photoreceptors isolated from amphibian retinas and found that immunoreactivity to the heavy chain of the motor protein kinesin was closely associated with the microtubules in each of these outer segment cytoskeletal systems. In the outer segments of cones, kinesin heavy chain immunoreactivity was confined to a streak at the axoneme that extended to the outer segment tip. In the outer segments of rods, kinesin heavy chain immunoreactivity was found as both a short streak at the axoneme and a series of long parallel lines that coincided with the microtubules at rod outer segment incisures. Our findings constitute the first report of kinesin in the axoneme of cones and at the incisures of rods. Closely associated with microtubules, kinesin in photoreceptor outer segment axonemes and at rod outer segment incisures can transport materials longitudinally along the microtubules and/or connect these with each other and/or with other components. Because these cytoskeletal systems differ in fundamental ways, kinesin can play different roles in each case, e.g., kinesin at rod outer segment incisures can have structural and functional roles that are unique to rods. These findings may have clinical relevance because similar cytoskeletal systems are expected to occur in the outer segments of human photoreceptors; thus, a disturbance involving kinesin in the cytoskeletal systems at photoreceptor axonemes and/or at rod outer segment incisures could interfere with the normal structure and function of photoreceptors and contribute to human photoreceptor degenerations.  相似文献   

17.
We have recently isolated SMAP (Smg GDS-associated protein; Smg GDS: small G protein GDP dissociation stimulator) as a novel Smg GDS-associated protein, which has Armadillo repeats and is phosphorylated by Src tyrosine kinase. SMAP is a human counterpart of mouse KAP3 (kinesin superfamily-associated protein) that is associated with mouse KIF3A/B (a kinesin superfamily protein), which functions as a microtubule-based ATPase motor for organelle transport. We isolated here a SMAP-interacting protein from a human brain cDNA library, identified it to be a human homolog of Xenopus XCAP-E (Xenopus chromosome-associated polypeptide), a subunit of condensins that regulate the assembly and structural maintenance of mitotic chromosomes, and named it HCAP (Human chromosome-associated polypeptide). Tissue and subcellular distribution analyses indicated that HCAP was ubiquitously expressed and highly concentrated in the nuclear fraction, where SMAP and KIF3B were also present. SMAP was extracted as a ternary complex with HCAP and KIF3B from the nuclear fraction in the presence of Mg-ATP. The results suggest that SMAP/KAP3 serves as a linker between HCAP and KIF3A/B in the nucleus, and that SMAP/KAP3 plays a role in the interaction of chromosomes with an ATPase motor protein.  相似文献   

18.
Kinesin hydrolyses one ATP per 8-nm step   总被引:1,自引:0,他引:1  
Kinesin is a two-headed, ATP-dependent motor protein that moves along microtubules in discrete steps of 8 nm. In vitro, single molecules produce processive movement; motors typically take approximately 100 steps before releasing from a microtubule. A central question relates to mechanochemical coupling in this enzyme: how many molecules of ATP are consumed per step? For the actomyosin system, experimental approaches to this issue have generated considerable controversy. Here we take advantage of the processivity of kinesin to determine the coupling ratio without recourse to direct measurements of ATPase activity, which are subject to large experimental uncertainties. Beads carrying single molecules of kinesin moving on microtubules were tracked with high spatial and temporal resolution by interferometry. Statistical analysis of the intervals between steps at limiting ATP, and studies of fluctuations in motor speed as a function of ATP concentration, allow the coupling ratio to be determined. At near-zero load, kinesin molecules hydrolyse a single ATP molecule per 8-nm advance. This finding excludes various one-to-many and many-to-one coupling schemes, analogous to those advanced for myosin, and places severe constraints on models for movement.  相似文献   

19.
The motor protein kinesin is a heterotetramer composed of two heavy chains of approximately 120 kDa and two light chains of approximately 65 kDa protein. Kinesin motor activity is dependent on the presence of ATP and microtubules. The kinesin light chain-binding site in human kinesin heavy chain was determined by reconstituting in vitro a complex of recombinant heavy and light chains. The proteins expressed in bacteria included oligohistidine-tagged fragments of human ubiquitous kinesin heavy chain, spanning most of the stalk and all of the tail domain (amino acids 555-963); and untagged, essentially full-length human kinesin light chain (4-569) along with N-terminal (4-363) and C-terminal (364-569) light chain fragments. Heavy chain fragments were attached to Ni2+-charged beads and incubated with untagged light chain fragments. Analysis of eluted complexes by SDS-PAGE and immunoblotting mapped the light chain-binding site in heavy chain to amino acids 771-813, a region close to the C-terminal end of the heavy chain stalk domain. In addition, only the full-length and N-terminal kinesin light chain fragments bound to this heavy chain region. Within this heavy chain region are four highly conserved contiguous heptad repeats (775-802) which are predicted to form a tight alpha-helical coiled-coil interaction with the heptad repeat-containing N-terminus of the light chain, in particular region 106-152 of human light chain. This predicted hydrophobic, alpha-helical coiled-coil interaction is supported by both circular dichroism spectroscopy of the recombinant kinesin heavy chain fragment 771-963, which displays an alpha-helical content of 70%, and the resistance of the heavy/light chain interaction to high salt (0.5 M).  相似文献   

20.
Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination. We then use fluorescein-labeled hemagglutinin antibody fragments, together with relatively low-power continuous-wave illumination to examine the effectiveness of CALI targeted to kinesin. We show that CALI can destroy kinesin activity in at least two ways: it can either result in the apparent loss of motor activity, or it can cause irreversible attachment of the kinesin enzyme to its microtubule substrate. Finally, we apply this implementation of CALI to an in vitro system of motor proteins and microtubules that is capable of self-organized aster formation. In this system, CALI can effectively perturb local structure formation by blocking or reducing the degree of aster formation in chosen regions of the sample, without influencing structure formation elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号