共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
通过熔融共混方法制备聚乳酸(PLA)/热塑性淀粉(TPS)共混材料。研究了TPS用量对PLA/TPS共混材料力学性能、降解性能、热性能和微观形貌等的影响。结果表明,加入TPS在一定程度上能改善PLA韧性不足的问题,PLA/TPS共混材料的降解性能优于纯PLA。当TPS质量分数为10%时,TPS与PLA的相容性较好,PLA/TPS共混材料的综合性能最好,其中,断裂伸长率为37.4%,比纯PLA提高695.7%;冲击强度为5.5 kJ/m2,比纯PLA提高34.1%;熔体流动速率为18.0 g/(10 min),比纯PLA提高4.7%;在60 d的降解率为9.28%,远大于纯PLA的1.30%;失重5%时的温度为172℃,比纯PLA降低161℃;450℃时的质量保持率为11.28%,比纯PLA提高11.06%。 相似文献
3.
以淀粉和乳酸为原料合成相容剂聚乳酸接枝淀粉(PLA-g-ST),并通过熔融共混的方法制备聚乳酸(PLA)/热塑性淀粉(FPTPS)共混材料。研究了PLA-g-ST用量对PLA/FPTPS共混材料力学性能、微观形貌和热性能的影响。结果表明,PLA-g-ST改善了PLA/FPTPS共混材料的相容性;当PLA-g-ST用量为7%时,拉伸强度为19.7MPa,比未添加PLA-g-ST的共混材料提高了20.9%,断裂伸长率为62.1%,比未添加PLA-g-ST的共混材料提高了16.7%,冲击强度为7.6 kJ/m2,比未添加PLA-g-ST的共混材料提高了11.8%;当PLA-g-ST用量为9%时,弯曲强度为19.2 MPa,比未添加PLA-g-ST的共混材料提高了6.6%。 相似文献
4.
5.
针对传统导热材料基体难以自然降解的问题,选择更加环保的蚕丝蛋白为基体材料,采用球磨共混-热压成型制备了氮化硼/蚕丝蛋白导热复合材料,考察了复合材料的形貌结构和导热性能。结果表明,氮化硼在复合材料中沿水平方向分布,导致复合材料表现出明显的导热各向异性。复合材料的导热系数随着氮化硼质量分数的增加而提高。当氮化硼质量分数为50%时,复合材料的水平方向导热系数为12.42 W/(m·K),垂直方向导热系数为0.41 W/(m·K)。红外热成像结果表明,氮化硼/蚕丝蛋白复合材料具有优异的传热性能。 相似文献
6.
聚乳酸/淀粉复合材料的制备及性能研究 总被引:13,自引:0,他引:13
采用熔融共混的方法制备了聚乳酸/淀粉复合材料。通过力学测试、DSC、DMA和SEM等分析,研究了聚乳酸和淀粉在不同质量配比下,复合材料力学性能、热性能、吸水率的变化,并研究了增容剂环氧树脂对复合材料性能的影响。通过研究发现,随着淀粉含量的增加,复合材料力学性能下降,结晶度减小,储能模量降低,吸水率增大;环氧树脂的加入能提高复合材料的力学性能;SEM分析表明,聚乳酸/淀粉复合材料的断裂面呈脆性断裂特征。 相似文献
7.
8.
9.
10.
11.
苹果酸对聚乳酸/热塑性淀粉共混物结构与性能的影响 总被引:3,自引:0,他引:3
将天然淀粉用甘油改性后制得了热塑性淀粉(TPS),再通过熔融共混法制备了聚乳酸(PLA)/TPS共混物。通过SEM、TG、DSC分析和拉伸性能、吸水性能、流变性能测试,研究了苹果酸对TPS和PLA/TPS共混物结构和性能的影响。结果表明:苹果酸能促进淀粉酸解,使TPS分散相尺寸减小,在PLA基体中的分布更加均匀;苹果酸能提高PLA/TPS共混物的拉伸性能;苹果酸对PLA/TPS共混物的玻璃化转变温度、熔融温度及冷结晶温度影响较小;少量的苹果酸可降低PLA/TPS共混物的吸水率。 相似文献
12.
《中国胶粘剂》2017,(8)
以甲基硅油为基础油、无水乙醇为分散剂、BN(氮化硼)或CNTs(多壁碳纳米管)/BN混杂物为导热填料,制备BN导热硅脂和CNTs/BN复合导热硅脂。研究结果表明:当w(BN)=50%和w(CNTs)=2%(相对于BN导热硅脂总质量而言)时,复合导热硅脂的热导率[为0.699 4 W/(m·K)]比BN导热硅脂提高了14.3%,体积电阻率为5.11×1011Ω·cm、接触电阻为88.6μΩ,说明CNTs/BN的协同作用,使复合导热硅脂既具有良好的导热性能,又具有优良的绝缘性能;采用修正的Burggeman非对称模型对复合导热硅脂的上述性能进行预测,所得实测值与理论值基本相符。 相似文献
13.
14.
15.
16.
17.
聚乳酸生物复合材料降解性能的研究 总被引:1,自引:0,他引:1
研究了使用土埋法降解后,经聚乙二醇400改性前后的聚乳酸/热塑性淀粉复合材料其质量和力学性能的变化,进而分析聚乳酸生物复合材料的降解性能。结果表明:在改性前,样条的降解性能随着热塑性淀粉含量的增加而变得更好;经过PEG400改性后,样条的降解率随着PEG400含量的增加而增加,说明PEG400在一定程度上促进了复合材料的降解。 相似文献
18.
19.
分别采用氮化硼和氮化硼/碳纳米管(CNTs)复配物制备导热乙烯基聚二甲基硅氧烷(PDMS)材料,并对其导热性能进行研究。结果表明:随着氮化硼和CNTs用量的增大,材料的热导率和热扩散系数逐渐增大;氮化硼用量足够大时,能够形成导热通路进而促进填料网络的形成;CNTs在填料中将氮化硼粒子之间形成的平面结构连接起来,从而形成三维网络结构;填料越多,形成的导热网络结构越强;氮化硼在网络中起主要作用,CNTs起到辅助增强的作用。 相似文献