首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于原位腐蚀观察方法,采用光学显微镜(OM)、扫描电镜(SEM)和能谱分析(EDS)、盐水浸泡实验等研究Mg-Gd-Y-Nd-Zr合金在3.5%NaCl(质量分数)溶液中的腐蚀机理,探讨不同第二相在合金局部腐蚀中的作用机制。结果表明,合金腐蚀初期表现出典型的点蚀特征,富Gd和富Y粒子作为阴极相导致边缘基体相α-Mg的优先溶解,富Zr粒子中的Mg和边缘α-Mg都优先发生腐蚀,且腐蚀源的具体位置与第二相粒子和基体表面间的方位有关。在局部腐蚀过程中,具有更高稀土或锆含量的第二相微区表现出更好的耐蚀性能。此外,在第二相密集分布的区域,第二相粒子充当腐蚀屏障,使微区的耐蚀性能提高。  相似文献   

2.
采用全浸泡腐蚀和电化学腐蚀研究等径角挤压制备的超细晶铝铜合金块材在氯化钠溶液中的腐蚀行为。结果表明:超细晶铝铜合金中基体相α(Al)晶粒细小(为200~300nm);铸态组织中网状θ相(Al2Cu)破碎、细化成10μm左右的颗粒并均匀分布于形变α(Al)基体上;形变细化提高铝铜合金在氯化钠介质中的耐蚀性能,表现出全浸泡腐蚀中更轻的腐蚀程度、电化学测试中更大的极化电阻、更正的自腐蚀电位和点蚀电位、更小的腐蚀电流密度。  相似文献   

3.
采用浸泡实验与电化学循环极化曲线测试研究了7020铝合金在3.5%(质量分数)NaCl溶液中的点蚀行为,并结合金相显微镜(OM)、扫描电镜(SEM)及扫描透射电镜(STEM)的微观组织观察结果对相关机理进行了分析和探讨。结果表明:7020铝合金的最大点蚀深度随时间变化的曲线为S型,呈缓慢增长-快速增长-保持稳定的过程。合金中α-AlFeSiMn相在点蚀浸泡过程中充当阴极,且发生了去合金化,周围的Al基体充当阳极而被腐蚀,含MnCr的弥散相则伴随Al基体的腐蚀而脱落。浸泡后期点蚀敏感性降低,表面的腐蚀产物可起到一定的保护作用。  相似文献   

4.
通过测定Al-Mg-Si合金晶界各组成相的极化曲线及不同Mg/Si比Al-Mg-Si合金晶界组成相(AlMg_2Si及Al-Mg_2Si-Si)间的动态电化学偶合行为,研究了不同Mg/Si比Al-Mg-Si合金的晶间腐蚀机理。研究表明,晶界Si电位比其边缘Al基体正,在整个腐蚀过程中作为阴极导致其边缘Al基体的阳极溶解。晶界Mg_2Si电位比其边缘Al基体负,在腐蚀初期将作为阳极而发生阳极溶解;由于Mg_2Si中活性较高元素Mg的优先溶解,不活泼元素Si富集,致使Mg_2Si电位正移,甚至与其边缘Al基体发生极性转换,导致其边缘Al基体的阳极溶解。Mg/Si1.73的Al-Mg-Si合金晶界只存在不连续分布的含Mg、Si的析出相,不能在晶界形成连续腐蚀通道,合金不表现出晶间腐蚀敏感性。Mg/Si1.73的Al-Mg-Si合金晶界同时析出含Mg、Si析出相和Si粒子;腐蚀首先萌生于Mg_2Si相;而后,Si粒子一方面导致其边缘无沉淀带严重的阳极溶解,另一方面通过加速Mg_2Si和晶界无沉淀带的极性转换,协同促进了Mg_2Si边缘无沉淀带的阳极溶解,即腐蚀沿晶界Si粒子及Mg_2Si粒子边缘的无沉淀带发展。Si粒子促进了腐蚀的发展,导致合金表现出严重的晶间腐蚀敏感性。  相似文献   

5.
通过不同温度退火处理模拟架空输电用Al-Mg-Si合金线的热服役环境,对不同退火温度下Al-Mg-Si合金线的导电率演变规律与机制进行了研究。结果表明,Al-Mg-Si合金线的导电率随着退火温度的升高呈现3阶段特征,第一阶段温度为90~150 ℃,Al-Mg-Si合金线导电率略微增大,缺陷的回复是本阶段Al-Mg-Si合金线导电率增大的原因;第二阶段温度为150~200 ℃,析出相的长大和固溶原子的析出导致Al-Mg-Si合金线导电率大幅增大;第三阶段温度为200~300 ℃,晶粒长大是Al-Mg-Si合金线导电率缓慢增大的主要原因。  相似文献   

6.
通过添加不同含量Si和Mg,研究Si、Mg对Al-Mg-Si合金显微组织与显微硬度的影响。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和显微硬度计分别对合金的微观形貌、相组成及显微硬度进行测试分析。结果表明:合金中主要有初生α-Al、骨骼状Mg2Si相、板片状共晶Si,还会出现少量的Al9Si、Al8Si6Mg3Fe、Al0.3Fe3Si0.7 和Al0.5Fe3Si0.5。随着Si含量的增加,Al-Mg-Si合金中α-Al枝晶变得细小,初生硅含量增加。随着Mg含量的增加,α-Al枝晶变粗、变大,从α-Al基体和初晶Si中的析出相逐渐明显,Mg2Si强化相聚集长大,同时α-Al初生晶尺寸增大。随着Si含量的增加,Al-Mg-Si合金的显微硬度也随之提高。随着Mg含量的增加,合金显微硬度先增大后减小。  相似文献   

7.
采用电磁搅拌连续铸挤工艺成形Al-5Ti-1B合金线,利用等离子体发射光谱仪、光学显微镜、X射线衍射仪和扫描电镜研究了Al-5Ti-1B合金线的组织与晶粒细化效果,并与Al-5Ti-1B合金锭进行了比较。结果表明,通过中间包电磁搅拌和连续铸挤成形过程中半固态剪切搅拌和剧塑性变形作用,可细化TiAl3相尺寸,改善TiB2粒子的分布状态,TiAl3相为细小块状,TiB2粒子弥散分布于α-Al基体中。Al-5Ti-1B合金线的晶粒细化能力增强,纯铝中添加0.2%的Al-5Ti-1B合金线静止5min,晶粒平均尺寸可细化至223μm,静止180min,晶粒平均尺寸为316μm。  相似文献   

8.
pH值对挤压Mg合金AM60腐蚀的影响   总被引:2,自引:0,他引:2  
观察了挤压Mg合金AM60在pH值分别为3,7和12的3.5%NaCl溶液中的腐蚀形貌,测量了蚀坑的数目和尺寸,讨论了pH值对AM60腐蚀的影响和AlMn相粒子在腐蚀中的作用,提出了AM60的点蚀模型.实验表明,在溶液pH值为酸性和中性(pH=3或pH=7)时,AM60产生点蚀,它萌生于与AlMn相粒子相邻的α相;pH值为碱性(pH=12)时,产生高Al区(如:AlMn相和β相)的均匀腐蚀,呈现蜂窝状腐蚀形貌.pH=7时,点蚀坑数目最多.  相似文献   

9.
采用动电位阳极极化法对17%SiCp/2024Al基复合材料及其基体合金在3.5%NaCl水溶液中的耐蚀性进行了研究.结果表明:SiC颗粒的加入并不影响SiCp/2024Al基复合材料的点蚀敏感性,但与基体相比,其耐蚀性有所下降.对极化后和长期浸泡试样的腐蚀形貌观察发现:与基体相比,SiCp/2024Al基复合材料表面上的蚀孔数量相对较多,蚀孔尺寸稍小,大小分布不均匀;最大蚀孔较深,并有严重的裂缝腐蚀;裂缝腐蚀的存在会使SiCp/2024Al基复合材料的点蚀抗力明显降低.能谱分析表明:SiCp/2024Al基复合材料的腐蚀机制为富Cu阴极相与贫Cu阳极相间的电偶腐蚀,另外,SiC与Al间也存在电偶腐蚀倾向.  相似文献   

10.
利用自制试验装置,通过静态失重试验、电化学测试,研究了907A低合金钢在模拟1 000 m深海环境中的腐蚀行为,并对其腐蚀机理进行了分析。结果表明:907A低合金钢在模拟深海环境中的腐蚀速率随浸泡时间的延长而逐渐减小,最终趋于稳定,致密均匀的锈层有效遏制了腐蚀性离子向基体渗透,起到防护作用;腐蚀产物主要以α-FeOOH、γ-FeOOH和Fe3O4为主,随着浸泡时间的延长,γ-FeOOH向α-FeOOH的转化使907A钢的腐蚀速率降低;浸泡初期907A钢表面主要发生点蚀,点蚀萌生于基体与夹杂物界面处,随着浸泡时间的延长,点蚀逐渐转变为均匀腐蚀。  相似文献   

11.
采用光学显微镜、透射电镜、X射线衍射、扫描电镜及能谱等研究中性和酸性NaCl腐蚀溶液中残留结晶相对Al-Mg-Si-Cu合金晶间腐蚀行为的影响。结果表明:实验合金含有Mg2Si和Al4.01(MnFeCrCu)Si0.74两种残留结晶相。在中性和酸性溶液中,Mg2Si相通过Mg优先溶解,由阳极转换成阴极,进而造成基体点蚀。Al4.01(MnFeCrCu)Si0.74相在中性溶液中作为阴极,导致周围Al基体发生点蚀,而在酸性溶液中只发生自身腐蚀。当点蚀发生在晶界上时,能直接诱发晶间腐蚀;而当点蚀发生在晶内时,则需点蚀扩展至晶界才能诱发晶间腐蚀。不同于中性溶液,酸性溶液中的晶间腐蚀也可以由晶界直接形成。  相似文献   

12.
《铸造》2020,(4)
利用金相显微镜和扫描电子显微镜等设备研究了稀土Y和Sr共同添加对Al-Mg-Si铝合金α-Al枝晶和共晶Si相显微组织的影响及作用机理。研究表明,Al-Y中间合金对Al-Mg-Si铝合金α-Al晶粒有明显细化作用,而且对共晶硅也具有变质效果。Y与Sr协同作用对Al-Mg-Si合金细化和变质的效果更佳。Al-Mg-Si铝合金经Y和Sr协同作用后,α-Al晶粒尺寸从62.1μm减小到48.48μm,共晶硅颗粒平均尺寸减小到4μm,宽径比减小到1.7,铸态抗拉强度提高了27.2%,达到213.3 MPa。稀土Y和Sr共同添加到Al-Mg-Si合金后,稀土Y主要以化合物AlSiYMg存在,并未与Sr生成化合物而降低Sr对Si的变质作用。文中还对稀土Y和Sr协同作用机理进行了分析和讨论。  相似文献   

13.
Cu含量对一种新型Al-Mg-Si合金晶间腐蚀的影响   总被引:4,自引:0,他引:4  
采用浸泡腐蚀实验和电化学实验研究了Cu含量变化和热处理条件对一种新型舰载飞机用Al-Mg-Si合金的耐腐蚀性能的影响.结果表明,添加Cu后,实验合金的 腐蚀方式由点蚀转变为晶间腐蚀,且腐蚀程度随Cu含量的增加而严重;与欠时效和过时效状态相比,T6态对晶间腐蚀较敏感,与晶界析出相的连续分布有关.电化学实验表明,所有实验合金均较快进入钝态;随Cu含量的增加,实验合金的自腐蚀电位向正向变化,腐蚀电流密度增加;随时效时间的延长,点蚀电位、晶间腐蚀的临界点位和自腐蚀电位逐渐向负向变化.而点蚀电位和自腐蚀电位随时效时间呈抛物线变化,晶间腐蚀的临界电位则呈直线变化.     相似文献   

14.
通过电化学试验和浸泡试验,利用扫描电镜(SEM)、透射电镜(TEM)和原子力显微镜(AFM)表征了超纯铁素体不锈钢的点蚀坑尺寸、TiN夹杂物的微观结构以及TiN与基体的电势差和高度差,分析了TiN对试样点蚀发生和扩展的作用机理。结果表明:试样的腐蚀电位和点蚀电位分别为94 mV和353 mV,点蚀坑的平均宽度和深度分别为203.6μm和114.74μm, TiN夹杂物以单个或团簇的形式存在;TiN比基体的电势高65 mV,点蚀优先在TiN与基体界面处发生,基体成为阳极发生微电偶腐蚀;由"孔内活化-孔外钝化"腐蚀电池引起的自催化过程加速了点蚀的扩展。  相似文献   

15.
研究了 Al-Mg-Si合金线的强度和微观组织结构与拉拔变形量的关系,分析了 Al-Mg-Si合金线的强化机制.结果表明:Al-Mg-Si合金线强度随变形量的增大呈现两阶段特征,第一阶段为变形量小于55.3%时,Al-Mg-Si合金线强度随着变形量的增大而缓慢增加,第二阶段为变形量超过55.3%时,Al-Mg-Si合金...  相似文献   

16.
TA2/316L爆炸复合板的点蚀行为   总被引:2,自引:0,他引:2  
采用X射线(XRD)、扫描电镜(SEM)、光学显微镜(OM)、动电位极化及浸泡腐蚀技术,研究了316L爆炸焊接前后的点蚀行为.XRD分析表明,相对于基体试样,316L侧焊缝和熔合区产生了第二相及δ铁素体相;动电位极化和浸泡腐蚀实验表明,316L基体及焊缝金属都表现出钝性,但焊接后的316L耐点蚀性降低,焊缝和熔合区被优先腐蚀.  相似文献   

17.
Al-Mg-Si合金中Mg_2Si和Si粒子在晶间腐蚀过程中的作用机理   总被引:1,自引:0,他引:1  
研究Al-Mg-Si合金晶界组成相(Al-Mg2Si及Al-Mg2Si-Si)间的电化学行为和动态电化学耦合行为,提出Al-Mg-Si合金的晶间腐蚀机理。研究表明,晶界Si的电位比其边缘Al基体的正,在整个腐蚀过程中作为阴极导致其边缘Al基体的阳极溶解;晶界Mg2Si的电位比其边缘Al基体的负,在腐蚀初期作为阳极发生阳极溶解,然而由于Mg2Si中活性较高的元素Mg的优先溶解,不活泼元素Si的富集,致使Mg2Si电位正移,甚至与其边缘Al基体发生极性转换,导致其边缘Al基体的阳极溶解。当n(Mg)/n(Si)〈1.73时,随着腐蚀的进行,合金晶界同时会有Mg2Si析出相和Si粒子,腐蚀首先萌生于Mg2Si相和Si边缘的无沉淀带,而后,Si粒子一方面导致其边缘无沉淀带严重的阳极溶解,另一方面加速Mg2Si和晶界无沉淀带的极性转换,从而促使腐蚀沿晶界Si粒子及Mg2Si粒子边缘向无沉淀带发展。  相似文献   

18.
对自行研制的4种不同Bi含量易切削Zn-Al合金在3.5%的NaCl溶液中进行浸泡腐蚀试验,并与潮湿和干燥空气中的试样作对比。采用X射线衍射、场发射扫描电镜、能谱分析以及电化学测试等手段研究了合金在不同介质中的腐蚀行为。结果表明,合金的腐蚀主要表现为点蚀。随着Bi含量的增加,平均腐蚀速率加快。合金中的富铝α相是易腐蚀相,Zn-Al合金的腐蚀过程是以η相作为阴极,Al组元作为阳极而溶解的电化学腐蚀过程。  相似文献   

19.
采用扫描电镜、透射电镜、动电位极化和浸泡实验研究了热处理对汽车散热器翅片材料在0.6 mol/L(pH 6)溶液中的腐蚀的影响.热处理模拟了控制气体的焊接方法.结果表明热处理对尺寸大于1μm的合金相没有影响,但增加了尺寸小于1μm的合金相的数目.同时降低了翅片材料的阳极活性且提高了其阴极活性.阴极活性的提高归因于阴极合金相数目的增多.阳极活性的降低可能是与富Si的合金相溶解在基体里并降低基体的阳极活性有关.  相似文献   

20.
采用原位腐蚀试验、静态失重试验、浸泡试验研究了2219铝合金搅拌摩擦焊接接头的剥落腐蚀行为与机理。结果表明:2219铝合金搅拌摩擦焊焊缝腐蚀速率比母材小,焊缝的抗腐蚀性提高;腐蚀从局部点蚀开始,起源于第二相粒子与其边缘的铝基体,第二相粒子作阴极;原位腐蚀2 h后焊核与热机影响区发生晶间腐蚀,母材发生严重的点蚀;均匀分布的第二相粒子与细小的等轴晶组织是焊核区剥落腐蚀敏感性降低的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号