共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a simple low-cost technique for evaluating the phase distortion in a magneto-optic spatial light modulator. We find that the dominant distortion is caused by astigmatism and is easily compensated by encoding of the complex-conjugate pattern onto the device. Two experimental results are shown. First, the focused spot size from a Fresnel lens is sharpened when the aberrations are corrected. Second, we show that the pattern that generates a first-order Bessel-function nondiffracting beam does not work unless the aberrations are corrected. 相似文献
2.
A ferroelectric liquid-crystal spatial light modulator with an active silicon backplane is used to implement reconfigurable reflective phase holograms. Optical results are presented for an optimized computergenerated Fourier hologram. 相似文献
3.
In this paper, the issue of misalignment in phase retrieval by means of optical linear filtering is discussed. The filtering setup is based on a 4f configuration with a spatial light modulator (SLM) as an active element, located in the Fourier domain. From the analysis, crucial parameters for the alignment procedure of the setup's optical axes and the center of the SLM are identified. Furthermore, a method to automatically as well as electronically compensate such effects by modifying the phase pattern displayed on the SLM is introduced. Experimental results are presented that validate the compensation approach. 相似文献
4.
液晶空间光调制器相位调制特性研究 总被引:1,自引:0,他引:1
研究了美国BNS公司生产的Modal P256反射型电寻址液晶空间光调制器的相位调制特性和时间响应特性.采用He-Ne激光作光源,建立迈克尔孙干涉光路观察波前相位变化,给出器件的相位调制特性曲线.分析测量了器件的相位响应不一致性和像素间的相位交连.通过测量液晶器件对方波和正弦控制信号的相位响应延迟,分析了液晶空间光调制器(LC-SLM)的时间响应特性.理论分析与实验结果说明:在特定的入射偏振条件下,LC-SLM实现纯相位调制,可用作高分辨力波前校正器件,然而极慢的响应速度和极低的时间带宽限制了它在动态变化波前相差校正中的应用. 相似文献
5.
Hällstig E Martin T Sjöqvist L Lindgren M 《Journal of the Optical Society of America. A, Optics, image science, and vision》2005,22(1):177-184
The polarization properties of a nematic zero-twist liquid-crystal (NLC) spatial light modulator (SLM) were studied. A large ratio between the liquid-crystal (LC) layer thickness and the pixel pitch combined with spatial variations in the applied electric field causes fringing fields between pixels. Depending on the LC alignment, the electric field components within the LC layer can result in a twist deformation. The produced inhomogeneous optical anisotropy affects the polarization of light propagating through the device. We experimentally examined polarization effects in different diffraction orders for both binary and blazed phase gratings. Simulations of the LC deformation together with finite-difference time-domain simulations for the optical propagation were used to calculate the corresponding far-field intensities. It was demonstrated how rigorous simulations of the NLC SLM properties can be used to understand the polarization features of different diffraction orders. 相似文献
6.
Encoding amplitude and phase information onto a binary phase-only spatial light modulator 总被引:1,自引:0,他引:1
We report what to our knowledge is a new technique for encoding both amplitude and phase information onto a single binary-valued spatial light modulator. In our approach, we spatially modulate the diffraction efficiency of the filter. Light that is not diffracted into the first order is sent into the zero order, effectively allowing amplitude modulation of either the first-order or zero-order diffracted light. This technique has applications in both optical pattern recognition and image processing. Experimental results are included. 相似文献
7.
An optically addressed liquid crystal spatial light modulator (SLM) with a photosensitive amorphous hydrogenated silicon carbide
(a-SiC:H) layer has been studied using holographic techniques. The maximum diffraction efficiency (DE) of the device amounted
to ηmax = 50.5%. A decrease in the DE to a level of 0.5ηmax was observed at a spatial frequency of 75 mm−1. The high resolution and DE of the proposed SLM are due to features in the formation of an asymmetric grating line profile
in the given structure. 相似文献
8.
Phase compression is used to suppress the on-axis zero-order diffracted (ZOD) beam from a pixelated phase-only spatial light modulator (SLM) by a simple modification to the computer generated hologram (CGH) loaded onto the SLM. After CGH design, the phase of each SLM element is identically compressed by multiplying by a constant scale factor and rotated on the complex unit-circle to produce a cancellation beam that destructively interferes with the ZOD beam. Experiments achieved a factor of 3 reduction of the ZOD beam using two different liquid-crystal SLMs. Numerical simulation analyzed the reconstructed image quality and diffraction efficiency versus degree of phase compression and showed that phase compression resulted in little image degradation or power loss. 相似文献
9.
Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator 总被引:1,自引:0,他引:1
Nondiffracting beams are of interest for optical metrology applications because the size of the beam does not change as the beam propagates. However, accuracy can be increased if the diameter of the beam is smaller. One technique for accomplishing this is to use the dark axial intensity profile associated with a higher-order nondiffracting Bessel function beam. We generate these higher-order Bessel function beams with a programmable spatial light modulator. We study the intensity patterns and the phase dependence of these nondiffracting beams. In addition, we examine interference effects caused by recording these patterns onto a binary spatial light modulator. 相似文献
10.
11.
We propose a new computer-controlled phase-shifting method based on computer-generated holograms (CGHs) displayed on a spatial light modulator (SLM). In this method the accurate phase shifts required in phase-shifting digital holography or interferometry are induced by a suitable transformation of the encoding patterns of the CGH displayed on a SLM. Both the theoretical analysis and the experimental results demonstrate the feasibility of this approach. We also discuss possible applications of this method in the field of interferometric null testing of aspheres. 相似文献
12.
Anisotropic diffraction gratings based on a holographic polymer-dispersed liquid crystal (HPDLC) are realized by interferometric exposure using a spatial light modulator (SLM). The SLM is used in the HPDLC grating formation for anisotropic holographic recordings of two-dimensional polarization states for an incident light beam. The diffraction efficiency for P-polarization and the distinctive ratio of diffraction efficiency in P-polarization to that in S-polarization increases with the signal level applied to the SLM. The resulting volume gratings exhibit diffraction efficiency of more than 60% and a distinctive ratio of diffraction over 100. The microscopic origin of the anisotropic property is investigated by an optical polarizing microscope. The novel characteristics of the anisotropic diffraction properties of HPDLC are applied to an image reconstruction technique. 相似文献
13.
用衍射光学方法研究了加有多级相位菲涅尔波带片(MPFZP)的空间光调制器(SLM)的轴上衍射光强。根据所需要的焦点的数目是一个还是两个以及分辨率的要求来优化选择MPFZP的相位深度和量化级数,可以使想要的焦点得到加强,而其它不想要的焦点的影响得到了抑制。开关SLM的编码态,聚焦点和散焦点的位置交换。 相似文献
14.
A direct quantitative phase measurement method to characterize intrinsic phase modulation from an entire active area of transmissive twisted-nematic liquid-crystal spatial light modulator (TN-LCSLM) is presented using digital holography (DH). The change in birefringence of liquid crystal material with respect to addressed gray scale produces phase modulation of wavefront transmitted through TN-LCSLM. Existing methods for phase modulation characterization of LCSLM mainly provides point measurement on its total active region. In this paper, the DH method is evolved to extract quantitative phase information of an entire active area from a single digital hologram formed using the complex wavefront transmitted through TN-LCSLM. 相似文献
15.
Daryl Preece Eric Yao Graham Gibson Richard Bowman Jonathan Leach Miles Padgett 《Journal of Modern Optics》2013,60(18):2945-2951
We report the design, construction and characterization of a 4 mega-pixel, optically-addressed, spatial light modulator (OSLM). The intensity distribution corresponding to a kinoform is displayed across two wide-screen liquid crystal on silicon displays, the images of which are combined and relayed to the address face of a 40 mm aperture OSLM. This spatially varying intensity profile is converted into a phase hologram on the readout side of the OSLM. When illuminated at 532 nm we measure a first-order diffraction efficiency of ≈50% at 400 line pairs and ≈20% at 900 line pairs. We show that aberration associated with the non-flatness of the device can be corrected within software by modification of the hologram. 相似文献
16.
In this paper we introduce an imaging system based on a reflective phase-only spatial light modulator (SLM) in order to perform imaging with improved geometric resolution. By using the SLM, we combine the realization of two main abilities: a lens with a tunable focus and a phase function that, after proper free-space propagation, is projected as an amplitude distribution on top of the inspected object. The first ability is related to the realization of a lens function combined with a tunable prism that yields a microscanning of the inspected object. This by itself improves the spatial sampling density. The second ability is related to a projection of a phase function that is computed using an iterative beam-shaping Gerchberg-Saxton algorithm. After the free-space propagation from the SLM toward the inspected object, an amplitude pattern is generated on top of the object. This projected pattern and a set of low-resolution images with relative shift are interlaced and, after applying the proper regularization method, a geometrically superresolved image is reconstructed. 相似文献
17.
A major problem of optical microscopes is their small depth-of-field (DOF), which hinders automation of micro object manipulation using visual feedback. Wavefront coding, a well-known method for extending DOF, is not suitable for direct application to micro object manipulation systems based on visual feedback owing to its expensive computational cost and due to a trade-off between the DOF and the image resolution properties. To solve such inherent problems, a flexible DOF imaging system using a spatial light modulator in the pupil plane is proposed. Especially, the trade-off relationship is quantitatively analyzed by experiments. Experimental results show that, for low criterion resolution, the DOF increases as the strength of the mask increases, while such a trend was not found for high criterion resolution. With high criterion resolution, the DOF decreases as the mask strength increases when high-resolution images are required. The results obtained can be used effectively to find the optimum mask strength given the desired image resolution. 相似文献
18.
Real-time phase-difference amplification with a liquid-crystal spatial light modulator 总被引:2,自引:0,他引:2
We describe a simple system for achieving real-time phase-difference amplification of interferograms. We arrange the interferogram such that it contains high-spatial-frequency carrier fringes and project it onto the write side of an optically addressed phase-only spatial light modulator. The resultant phase pattern on the modulator is read out by two readout beams, and diffraction by the carrier fringes provides the spatial heterodyning that is necessary for achieving phase-difference amplification. We present results that demonstrate real-time phase-difference amplification by as much as a factor of 10. 相似文献
19.
A method of implementing optical logic has been realized experimentally with a novel liquid crystal on silicon spatial light modulator with an integrated lens arrays. The device allows for three optical inputs and one optical output per pixel. The different logic functions realized, OR, and, nor, nand, and xor, are discussed. 相似文献
20.
Phase-only liquid-crystal spatial light modulators provide a powerful means of wavefront control. With high resolution and diffractive (modulo 2pi) operation, they can accurately represent large-dynamic-range phase maps. As a result, they provide an excellent means of producing electrically controllable, dynamic, and repeatable aberrations. However, proper calibration is critical to achieving accurate phase maps. Several calibration methods from previous literature were considered. With simplicity and accuracy in mind, we selected one method for each type of necessary calibration. We augmented one of the selected methods with a new step that improves its accuracy. After calibrating our spatial light modulator with our preferred methods, we evaluated its ability to produce aberrations in the laboratory. We studied Zernike polynomial aberrations using interferometry and Fourier-transform-plane images, and atmospheric aberrations using a Shack-Hartmann wavefront sensor. These measurements show the closest agreement with theoretical expectations that we have seen to date. 相似文献