首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为主要反应单体,甲基丙烯酰氧乙基二甲基十六烷基溴化铵为疏水单体,采用水溶液聚合法合成了一种新型疏水缔合聚合物,适宜的反应条件是:反应温度50℃,单体质量浓度20%,疏水单体加量1.3%(物质的量分数),引发剂加量0.2%(以单体质量计),pH值为7。对聚合物的结构进行了表征,评价了聚合物溶液的性质。结果表明:聚合物结构与设计的分子结构一致;聚合物在170s-1下剪切2h后黏度保留率为78.2%;临界缔合质量浓度为0.4g/dL;90℃黏度保留率为61.2%;抗盐效果一般,NaCl加入量为0.5mol/L时,黏度保留率为38.2%。  相似文献   

2.
目的 单一功能的压裂液难以满足页岩油气的开采需求,为实现一剂多用,研制了兼顾减阻和增稠性能的一体化聚合物。方法 以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和十八烷基烯丙基二甲基氯化铵(DMAAC-18)为原料,采用水溶液聚合法,通过单因素实验确定最佳反应条件,合成了三元疏水缔合聚合物PAAD-18,进行了结构表征及性能测试。结果 聚合物质量分数为0.1%时,减阻率为71%,在10 m/s的流速下持续剪切10 min,减阻率保持在70%以上;质量分数为0.5%时,表观黏度为106.5 mPa·s, 90℃下黏度保留率为74.6%,盐水中黏度保留率大于52.1%。结论 该聚合物具有良好的耐温、耐盐及耐剪切性能,低含量下可做减阻剂,高含量下可做增稠剂,为体积压裂用多功能聚合物。  相似文献   

3.
采用水溶液聚合后水解法,以丙烯酰胺(AM)、(4-丙烯酰胺基)苯基十四烷基二甲基溴化铵(PTDAB)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为原料合成了疏水缔合聚合物P(AM/PTDAB/AMPS/NaAA),通过考察反应条件对合成聚合物的特性黏数、溶解性以及增黏性的影响规律确定了最佳合成条件,研究了最佳合成条件下所合成聚合物的耐温抗盐性、剪切稳定性以及热稳定性。聚合物的最佳合成条件为:PTDAB加量为总单体质量的0.5%~0.8%,AMPS加量为总单体质量的15%,总单体质量分数为25%,复合引发剂加量为总单体质量的0.1%,pH值为8,引发温度30℃。采用矿化度100 g/L的盐水配制的质量浓度2000 mg/L的合成聚合物溶液的黏度仍大于30 mPa·s;采用矿化度20 g/L的盐水配制质量浓度2000 mg/L的合成聚合物溶液在转速5000 r/min下剪切3 min再静置4 h后的黏度保留率可达80%以上;聚合物溶液在85℃高温老化150 d后的黏度大于20 mPa·s。所合成四元共聚物表现出优异的耐温抗盐性、剪切稳定性以及热稳定性,性能优于高相对分子质量抗盐聚丙烯酰胺P(AM-AMPS-NaAA)。  相似文献   

4.
采用水溶液聚合法,以丙烯酰胺(AM)、丙烯酸(AA)为单体,甲基丙烯酰氧乙基二甲基十六烷基溴化铵(C_(16)DM)为疏水单体合成了一种两性离子聚合物。通过单因素实验确定了聚合反应的较佳条件是:单体总质量分数25%、体系pH值8、n(AM):n(AA):n(C_(16)DM)=77.7:21:1.3、引发剂(n(APS):n(SS)=1.2:1)用量为0.2%、反应温度60℃、反应时间5h。实验表明:聚合物溶液的临界缔合浓度是2g/L;1.0%聚合物溶液黏度在90℃时为62 mPa·s,黏度保留率为64.6%;0.8%聚合物溶液在NaCl浓度为0.6 mol/L时黏度为40 mPa·s,黏度保留率为47.6%;在1 70 s~(-1)的剪切速率下,经过1200 s的剪切后,0.8%的聚合物溶液的黏度稳定在70 mPa·s,黏度保留率为82.3%。  相似文献   

5.
以丙烯酰胺(AM)为主单体,与阳离子单体二甲基二烯丙基氯化铵(DMDAAC)及改性单体2-甲基-2-丙烯酰胺基丙磺酸(AMPS)进行三元水溶液聚合,合成了一种酸化用稠化剂,并对其性能进行了评价。结果表明,该稠化剂在室温下能迅速溶解于20%的盐酸溶液中形成稠化酸。室温条件下,稠化酸粘度随着稠化剂加量的增加而增加,且增加趋势明显;随着养护温度的升高,稠化酸粘度略有下降,但粘度保留率高,温度达到120℃时,粘度保留率为78%,具有良好的耐温性;矿化度增加时,稠化酸粘度降低,矿化度达到1·6×105mg/L时,稠化酸粘度保留率为67·5%,具有一定的抗盐性。与不加稠化剂的盐酸相比,稠化酸与石灰石反应具有更低的反应速率,缓速性能良好。  相似文献   

6.
为满足耐温180℃海水基压裂液的需求,以丙烯酰胺、丙烯酸、2-丙烯酰胺基-2-甲基丙磺酸钠、N-乙烯基吡咯烷酮、顺丁烯二酸单十二烷基酯钠盐、N-十六烷基丙烯酰胺为原料,以亚硫酸氢钠-过硫酸铵为引发剂,制得缔合型聚合物稠化剂SWF-T180,评价了SWF-T180的增黏、抗盐、溶胀、耐温性能及其配制海水基压裂液的性能。研究结果表明,稠化剂SWF-T180增黏效果显著,加量超过0.6%时溶液黏度快速增加;SWF-T180具有良好的抗盐抗钙镁能力和速溶性能,在海水中溶胀8 min后的溶液黏度达到最终黏度的84.3%,耐温达180℃;由1%SWF-T180和0.6%交联剂配制的海水基压裂液在180℃下剪切90 min的黏度为60数70 mPa·s,具有良好的剪切恢复性能,满足海上180℃储层压裂施工的要求。图9表1参18  相似文献   

7.
《石油化工》2016,45(12):1526
以丙烯酰胺(AM)、2-甲基-2-丙烯酰胺基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)和N-乙烯基吡咯烷酮(NV P)为单体,通过水溶液聚合得到一种酸液稠化剂(PAADN)。采用FTIR和1H NMR方法对PAADN的结构进行了表征,采用单因素等方法优选聚合条件,并考察了稠化剂PAADN的性能。实验结果表明,适宜的反应条件为:单体配比m(AM)∶m(AMPS)∶m(DMDAAC)∶m(NVP)=6∶2∶1∶1、反应温度4 5℃、单体总用量2 5%(w)(基于反应体系质量)、过硫酸铵-亚硫酸氢钠引发剂用量为单体总质量的0.9%、体系p H=6~8、反应时间6 h。适宜的PADDN稠化酸配方为:盐酸含量20%(w)、PAADN用量0.5%(w)(基于稠化酸体系质量)、酸溶时间80 min、丙炔醇用量2.0%(w)。该稠化酸的黏度在170 s~(-1)时达到34 m Pa·s,且PAADN在稠化酸中具有较好的热稳定性、剪切稳定性、缓速性能和抗盐性能。  相似文献   

8.
以二烯丙基甲基十六烷基溴化铵(C16DMHB)为疏水单体,与丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)在水溶液中通过自由基聚合合成了疏水缔合聚合物,采用红外光谱对合成的聚合物进行了结构表征.最佳反应条件为:疏水单体C16DMHB的摩尔含量为0.4%,AMPS的摩尔含量为15%,单体总质量为20%,引发剂用量为2.5%(以单体的总质量计)最佳反应温度为45℃,最佳pH值为7~9.研究表明,聚合物的临界缔合浓度在1.8 g/L左右,扫描电镜表征了溶液的微观结构,溶液表观粘度随温度升高而降低,表现剪切稀释性.  相似文献   

9.
为了构造可长期适用于深穿透酸压工艺的稠化酸体系,以丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺基-2 甲基丙磺酸(AMPS)为原料,以及是否引入疏水单体AT100,分别制备了阴离子稠化剂PAP-1和疏水缔合稠化剂 PAP-2,考察了各反应条件对稠化剂性能的影响,并使用黏度计和高温流变仪对最佳反应条件下制备的稠化剂进 行了性能研究。确定了稠化剂PAP-1的最佳合成条件为:AM、AA和AMPS物质的量之比为90∶9∶1,引发剂占单 体总质量的0.03%,单体质量分数为25%,反应温度为55℃;稠化剂PAP-2最佳合成条件除疏水单体占其余单体 物质的量0.2%,其余与稠化剂PAP-1的一致。研究结果表明:常温下,0.8%稠化剂PAP-1和PAP-2在20%盐酸中 的酸溶时间分别为20、50min,酸液黏度分别39和54mPa·s,且与其余添加剂配伍性好。质量分数为0.8%的稠 化剂PAP-1和PAP-2与添加剂复配后,在160℃、170 s-1下酸液黏度分别为10、31 mPa·s,黏度保留率分别为 25.6%和57.4%。相比于稠化剂PAP-1,稠化剂PAP-2具有更优异的增黏耐温性能。因此,稠化剂PAP-2完全满足 酸化压裂现场要求,在深井及超深井中有着良好的应用前景。  相似文献   

10.
利用丙烯酰胺(AM)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为原料进行二元共聚,采用复合引发体系合成一种耐高温酸液稠化剂,通过单因素分析法确定最佳反应条件,对合成样品进行红外表征,并对其增黏性能、流变性能等进行评价。结果表明,最佳合成条件为 DMC 的质量分数15%、引发剂加量为 0.4%、聚合温度 50 ℃、聚合时间 4 h。合成的稠化剂易溶于酸,增黏效果好,在160 ℃、170 s-1条件下,质量分数 0.8%的稠化剂溶于质量分数 20% 的盐酸中剪切 60 min,黏度保持在 30 mPa·s 左右,具有较好的耐温性和耐剪切性;与缓蚀剂、铁离子稳定剂、黏土稳定剂等添加剂配伍性较好,形成的稠化酸体系可以有效提高酸液黏度,降低酸岩反应速率,提高酸刻蚀裂缝的穿透深度,为超深井酸压用工作液提供技术支撑。  相似文献   

11.
中亚土库曼斯坦阿姆河右岸气田群为高含H_2S和CO_2的碳酸盐岩气藏,单井产量高,井口设备均出现了不同程度的腐蚀。初步分析认为其原因是生产过程中仅考虑酸性介质对气井井口的化学腐蚀,而没有考虑气体流速对井口的冲蚀作用,极大地影响了气田的安全生产。为此,通过对节流阀上下游阀道、法兰面均出现明显坑状腐蚀的进一步分析,明确了化学腐蚀和气体冲蚀的交互作用是井口磨损的主要影响因素,气流冲刷腐蚀坑的化学腐蚀产物会加速冲蚀损害;进而借鉴冲蚀与腐蚀运行环境下的多相管流管道的磨损计算理论,计算了该运行环境下的冲蚀极限速度,得到了不同生产工况下节流阀的抗冲蚀流量;最后,根据气田生产情况,针对性地提出了按气井配产要求来选择采气树类型、节流阀通径及类型冲蚀的技术控制策略。此举为气田安全生产提供了工程技术保障。  相似文献   

12.
微裂缝—孔隙型碳酸盐岩气藏改建地下储气库的渗流规律   总被引:1,自引:0,他引:1  
微裂缝—孔隙型碳酸盐岩气藏储层非均质性强,边底水选择性水侵,渗流规律复杂,为了提高地下储气库的建库效率,需要研究储层在改建地下储气库多周期强注强采过程中的多相流体渗流规律。在获取有代表性的裂缝发育碳酸盐岩岩心较为困难的条件下,通过对天然岩心进行剪切造缝和多轮次气水互驱实验,研究了地下储气库气水过渡带在注采过程中的多相渗流规律,分析了裂缝合气空间贡献率以及储气库含气空间动用效果。结果表明:裂缝模型的相渗曲线近似于"X"形,多次气水互驱后相渗曲线基本没有变化,基质岩心模型相渗曲线经多次气水互驱后气水两相共渗区间变窄,共渗点降低;微裂缝对储层含气空间贡献率较高,微裂缝发育储层的含气空间利用率保持在较高水平,徽裂缝不发育储层的含气空间利用率逐渐降低并趋向稳定。因此,在微裂缝—孔隙型碳酸盐岩气藏改建地下储气库过程中可以在徽裂缝不发育储层布置生产井,同时通过控制边底水运移范围降低注入气损失,从而提高地下储气库的建库效率。  相似文献   

13.
针对山前地区深井超深井钻井过程中套管磨损严重的问题,在分析套管磨损机理的基础上,开展了山前地区套管防磨与减磨技术研究,基于技术研究成果及应用实践,得到如下结论:1应用Power V等垂直钻井系统控制井眼轨迹,特别是上部井段的狗腿度和井斜,可明显减小侧向力和磨损量,缩短套管磨损时间;2应综合考虑套管磨损率、磨损系数以及钻杆耐磨带本身的磨损量,优选出效果最优的耐磨带;在狗腿度严重的位置,可考虑采用一定数量的橡胶钻杆卡箍来减轻对套管的磨损;3山前地区钻井液采用CX-300减磨剂能够显著降低磨损速率,减轻套管磨损程度,但在不同钻井液体系使用之前应进行优化分析以确定最佳使用量;4在迪那204井使用高密度钻井液体系,全部采用优选的高密度重晶石粉代替铁矿粉作为加重剂,整个钻进过程中未出现钻具及套管磨损,迪那204井易损件消耗量仅为邻井迪那203井的左右,防磨减磨效果非常显著。  相似文献   

14.
Nearly 7,000 hectares of biodiesel forest will take shape in the northern province of Hebei in 2008, part of a national campaign to fuel the fast growing economy in a green way. In no more than five years, the Pistacia chinensis Bunge, whose seeds have an oil content of up to 40 percent, will yield five tons of fruit and contribute about two tons of high-quality biological diesel oil, according to the provincial forestry administration.  相似文献   

15.
Experts recently suggested China set up a state energy base in lnner Mongolia Autonomous Region to ease its energy thirst. The survey was co-conducted by senior researchers from the National Development and Reform Commission, Development Research Center of the State Council, Chinese Academy of Sciences and the Ministry of Finance. To plan and establish strategic energy bases at state level is in line with the principle of "giving priority to energy saving and diversifying energy consumption with the utility of coal at the core."  相似文献   

16.
宋举业  霍军  刘姝  邱玥  李铁夫  李宁 《石油化工》2015,44(3):375-380
利用气相色谱法测定了不同色谱柱温度和不同载气流速下,C1~12烷烃在ZSM-5分子筛上的保留时间,并利用相关公式对测试结果进行了线性回归分析,测得了吸附热力学参数和扩散系数;考察了色谱柱温度、烷烃碳链长度和载气流速对烷烃在ZSM-5分子筛上吸附扩散的影响。实验结果表明,回归分析的线性相关性良好,色谱柱温度越高,孔道对吸附质的吸附能力越弱;在不同载气流速下,轴向扩散系数不同;随烷烃碳链长度的增加,吸附焓变呈先增大后减小的趋势,轴向扩散系数呈线性增长;C1~12烷烃在ZSM-5分子筛上的吸附焓变在-1.264~-42.975 k J/mol之间;当载气流速为2.654~4.246 cm/s时,C1~4烷烃的轴向扩散系数在0.328 8~0.551 7 cm2/s之间;当载气流速为5.308~13.270 cm/s时,C1~4烷烃的轴向扩散系数在0.430 2~1.456 4 cm2/s之间。  相似文献   

17.
针对水驱油藏开发过程中无法有效定量描述驱替均衡程度的问题,利用高台子油层各井动态指标和小层纵向上的注采关系占总体的比重情况,绘制相应的洛伦茨分布曲线,得到用于量化评价油藏平面、纵向驱替均衡程度的“开发均衡指数”,该值小于0.4时驱替程度相对均衡。将研究成果应用于评价二次开发前后水驱油藏的驱替均衡程度,研究结果表明:目标区采出情况均衡指数降低了0.1615,含水情况均衡指数降低了0.0950,整体驱替均衡程度达到了相对均衡的水平,但纵向上仍差异悬殊。建立的洛伦茨曲线评价驱替均衡程度的方法,充分考虑了单井产能差异所造成的驱替不均衡情况,准确度高。研究成果为二次开发水驱油藏的驱替均衡程度评价提供了定量标准。  相似文献   

18.
复杂地质条件气藏储气库库容参数的预测方法   总被引:2,自引:0,他引:2  
国内复杂地质条件气藏型地下储气库经过10余周期注采后工作气量仅为建库方案设计工作气量的一半,运行效率偏低。为此,利用气藏地质、动态及建库机理,建立了地下储气库注采运行剖面模型,根据气藏开发、气藏建库及稳定注采运行过程中纵向上流体的分布特征及其变化趋势,将地下储气库剖面分成4个区带(建库前纯气带、气驱水纯气带、气水过渡带及水淹带);按区带确定了影响建库有效孔隙体积的主控因素(储层物性及非均质性、水侵和应力敏感)及其量化评价方法,进一步考虑束缚水和岩石形变的影响,并引入注气驱动相,根据注采物质平衡原理建立了气藏型地下储气库库容参数预测数学模型。该模型涵盖了地质、动态及建库机理,从微观和宏观角度综合评价了影响建库空间的主控因素,大大提高了预测结果的准确度和精度,使建库技术指标设计更趋合理,目前已广泛应用于中国石油天然气集团公司气藏型地下储气库群的建设当中。  相似文献   

19.
为了实现海洋模块钻修机的完整性管理,以结构完整性管理为指导思想,按照数据、评估、策略和规划4个过程要素设计了海洋模块钻修机完整性管理系统的整体框架,并制定了钻修机的风险评估方法及检测维修策略。系统采用以C/S体系结构为主、B/S体系结构为辅的混合技术架构,软件采用数据接口技术实现信息的共享与同步,提供稳定性评估、耐久性分析、疲劳寿命分析及安全分析、检修策略与规划等功能。将该软件应用于南海海域的某钻修机上,应用结果表明,软件可以满足海洋模块钻修机完整性管理与评价的基本要求。系统进一步的发展方向是优化智能决策方法,利用云计算方法提高数据存储的可靠性、安全性与完整性。  相似文献   

20.
正Current stituation of shale oil development in the world The US The country is blessed with abundant shale oil resources and had matersed whole sets of theories and technologies needed for their exploration and development after years of practices.According to an assessment of shale oil resources in major countries and regions of the world issued by the U.S.Energy Information Agency(EIA),the US ranks the second in the world with its 6.8 billion tons of technically recoverable shale oil(shale oil in place is about 136.3 tons).About 8plays had been confirmed to have  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号