首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
在地下盐岩储气库注采运行过程中,因腔内气体压力和温度变化而产生的地层压力和热应力变化,会影响腔体围岩的稳定,从而影响整个储气库的稳定性。为探究热力耦合条件下地下盐岩储气库运行的稳定性,建立了储气库腔体温度和压力计算模型,对不同注采速率和注采时间的腔体温度和压力进行计算,将计算值作为数值模拟的边界条件,运用FLAC 3D软件模拟注采过程中的腔体稳定性变化情况。结果表明:如果只考虑压力的影响(压力作用),则腔体在注采过程中只发生剪切损伤;如果同时考虑压力和温度影响(热力耦合作用),则腔体在注气过程中会产生剪切损伤,在采气过程中会产生拉张损伤、剪切损伤和膨胀损伤。研究成果对地下盐岩储气库运行安全管理具有一定的指导意义。  相似文献   

2.
盐穴储气库是我国重要的储气库类型,在我国南方地区具有广阔的建设空间,目前江苏省金坛市运行了国内第一座盐穴型储气库。上千万立方米天然气被高压储存在人工溶成的盐穴内,作为注(采)天然气唯一通道的注采井,其气密封性能是保证储气库安全运行的重要因素之一。为确保天然气的安全储存,根据国内盐穴储气库建设实际,吸收国外盐穴储气库的成熟设计理念,重点论述了在盐穴储气库完井阶段如何保证注采井的气密封性能,得出了盐穴注采井完井设计时需要考虑的重要因素,同时展望了盐穴储气库完井新技术,对今后国内盐穴储气库的完井设计具有指导作用。  相似文献   

3.
天然气地下储气库在能源结构调整及天然气的调峰中起着决定性的作用。用CO_2作储气库垫层气既可实现碳的地质埋存,又可提高天然气采收率,节约资金。在储气库注采运行过程中,储气库储层压力、流体饱和度等会发生周期性变化,流体渗流能力不断变化,作垫层气的CO_2气体与天然气的混气问题将不可避免。为指导储气库最优运行控制,必须研究垫层气与天然气混气现象的生成与发展,分析其主要影响参数及影响方式。采用数值模拟方法建立储气库机理模型,对垫层气注入方式、注入比例、储层渗透率等主要因素对垫层气与天然气的影响进行分析。结果表明,垫层气注入量、混气压力、注采速度等因素对混气有着明显的影响。研究结果对于储气库的最优运行控制,避免过度混气,影响采出气质量具有指导意义。  相似文献   

4.
注采规模决定了地下储气库井口数量、井口油套管尺寸的设计和地面集输系统的设计规模,注采规模的计算是季节调峰型地下储气库工程设计的关键。为此,以川渝气区相国寺地下储气库工程为例,制订了季节调峰型地下储气库注采规模的设计流程,阐述了消费系数法在天然气市场需求量预测中的应用,分析了天然气的需求结构及月不均匀系数对注采规模设计的影响,提出了季节调峰型地下储气库调峰需求总量及注采规模的计算方法,为其他类型储气库注采规模的设计提供了参考。  相似文献   

5.
地下储气库注采动态预测模型   总被引:1,自引:1,他引:0  
我国地下储气库建设才刚刚起步,目前尚缺乏一套相对成熟的地下储气库注采周期内动态模拟预测以及调峰气量计划配置的实用方法。从气体状态方程入手,推导出了一种预测地下储气库压力和注采气量关系的实用二元回归模型。经国内某地下储气库实例计算表明,该回归模型实用性较强,在地下储气库一个注采周期内的预测精度完全可以满足矿场要求,有利于运行管理部门优化配置地下储气库运行中的天然气供应、销售及储存。  相似文献   

6.
盐穴地下储气库注采热工性能模拟   总被引:5,自引:1,他引:4  
曹琳  Tan Yufei  李娜 《天然气工业》2005,25(8):103-105
储气库在建造和运行时,一方面溶腔内气体通过自然对流与周围盐层进行热交换,与周围盐层壁面形成不稳态导热温度场;另一方面连续注采循环,使腔内气体压力、温度发生变化,特别是在连续采气时,降压的焦耳-汤姆逊效应极易使井口气体压力和温度进入生成水化物的危险范围,因此动态确定盐穴储气库注采天然气时的热工特性变化十分必要。为此,根据热力学、传热学和流体力学理论,针对注采过程天然气在井筒流动和溶腔内传热过程的特点,将井筒、溶腔和周围盐层视为一个系统,提出了描述注采动态工程相互耦合的数学模型及其求解方法,并开发了相应的数值计算软件。该软件可预测盐穴地下储气库在连续注采气过程中,溶腔内及井筒顶、底部气体的压力和温度,并判断水化物形成的危险范围等。研究成果能对盐穴地下储气库的建造和技术特性做出预测分析,对其运行工况给予指导,并对注采气地面系统的优化设计提供理论分析依据。  相似文献   

7.
低含硫气藏改建储气库面临采出气体微含H_2S,腐蚀生产设备、增加地面投资等问题。研究低含硫气藏储气库运行过程中酸气含量变化规律,可为储气库方案编制、设备优选、工艺设计提供依据。以X储气库为例,运用数值模拟方法,对储气库运行过程中酸气平面分布、采出含量展开研究。结果表明:(1)注气阶段,酸气由井底流向地层,注气结束,采出酸气含量大幅下降;采气阶段,酸气由地层流向井底,采出气体酸气含量呈指数式升高;(2)初始浓度1 230 mg/m~3的情况下,自13个注采周期,采出气体中H_2S含量降至安全值20 mg/m~3以下;(3)库容利用率越大,产出气体中酸气含量下降速率越快。  相似文献   

8.
地下盐穴储气库盐岩热损伤机理   总被引:2,自引:2,他引:0  
解宁  李文婧 《石油学报》2019,40(3):357-369,382
基于变质量热力学原理,建立盐穴储气库注采过程中的工程热力学分析数学模型,给出了单个注气和采气过程中温度和压力随时间变化的解析解,作为数值模拟的边界条件。根据金坛储气库的基本数据和盐岩实验研究参数,利用COMSOL Multiphysics有限元软件建立单腔盐穴注采过程的温度-应力耦合模型,模拟恒定注采速率下盐腔围岩的拉伸损伤、剪切损伤和膨胀损伤分布情况,研究夹层和热应力对围岩损伤的影响。基于热应力理论,结合模拟结果分析盐穴储气库注、采气过程中围岩的热损伤机理。模拟结果表明:在热应力存在的情况下,夹层的存在促进了围岩损伤的产生,无夹层时围岩无损伤发生,有夹层时围岩存在损伤;注气过程和采气过程的损伤发生位置存在差别:注气过程损伤多发生在夹层附近的盐岩中,采气过程损伤多发生在夹层中;膨胀损伤的范围最广,且损伤范围覆盖了前2种损伤,因此实际生产过程中推荐使用膨胀损伤判据,损伤评价结果更为保守。  相似文献   

9.
地下盐穴储气库注采周期的变化会导致腔内气体的温度、压力发生周期性变化,从而导致围岩中产生热应力,进而危及储气库注采过程中的安全运行。基于变质量热力学理论,推导出了注采过程中变注采速率的条件下腔内气体温度、压力随时间变化的微分方程,并结合已有的研究实例进行验证。基于单个腔体热固耦合模型,分别研究了注采气过程中,热效应、注采速率以及盐岩导热系数对腔体稳定性的影响。对于注气过程,热效应的存在、注气速率的增加以及盐岩导热系数的增大有助于避免围岩中发生拉伸损伤,维持腔体的稳定性;而对于采气过程,热效应的存在、采气速率的增加以及盐岩导热系数的增大会加剧围岩中的拉伸损伤,不利于腔体的稳定性。  相似文献   

10.
谭羽非 《天然气工业》2003,23(2):102-105
利用开采后已枯竭的油气田建造天然气地下储气库,是平抑城市供气峰值波动的最合理有效的手段之一。在储气库进行注采动态运动时,避免注入气与垫层气发生混合是至关重要的技术问题,通过舂别建立三维两相渗流模型和气体扩散模型,采用跳跃式的求解方法,首先采用有限差分的分数步长算法,求解出库内各点瞬态压力分布,再由达西定律确定出速度分布,然后采用循征线中心差分格式求解气体扩散数值模型,动态确定出垫层气的需求量和注采天然气所需的最佳储气压力、残存气与储存天然气的混合而导致的回采气体浓度的变化,为保证储库满负荷的优化运行提供科学依据。  相似文献   

11.
空气-泡沫驱提高采收率技术的安全性分析   总被引:8,自引:1,他引:7  
空气-泡沫驱提高采收率技术的安全性问题一直是学术界关注的焦点,它关系到这项技术的应用。从气体爆炸极限和氧气的消耗两个角度对该问题进行分析。在气体爆炸理论的基础上,推导出天然气与空气混合爆炸工程估算的方法,并对一种实际天然气进行估算,得出该天然气的爆炸上限为3.210%,下限为10.320%;随着天然气甲烷含量的增加,估算出来的爆炸界限与甲烷单组分的爆炸极限值相接近。通过低温氧化反应及其动力学机理分析得出,由干低温氧化及用,空气中的氧气与原油中的烃类物质发生反应而被消耗,生成二氧化碳和一氧化碳等“烟道气”,从而增加了安全可靠性。现场测试的结果也证明只要注意控制注入压力和注入量,监测油管内气体含量,该技术就具有安全性。  相似文献   

12.
煤层气爆炸极限分析   总被引:2,自引:0,他引:2  
煤层气爆炸极限的准确确定是煤层气安全开发利用的前提条件。煤层气爆炸极限不仅取决于单组分可燃性气体组成及其含量等自身因素,还受到大气压力、温度等因素的影响,因而首先对煤层气中单组分可燃性气体爆炸极限的准确确定十分必要。为此,采用按完全燃烧所需要的氧原子数和按化学计量浓度两种理论方法对煤层气中常见的单组分可燃性气体进行计算及分析。结果表明,两种理论方法对爆炸下限的计算比爆炸上限更好地接近实验值,其中按完全燃烧所需要氧原子数的改进方法更为准确。然后对含有多组分的煤层气,采用理查特利(Le Chatlier)公式法进行了理论计算,分析了惰性气体、压力、温度对爆炸极限的影响,与温度相比,压力对爆炸上限的影响更大。因此,在煤层气的开发利用中,应尽可能在低温和低压条件下操作。  相似文献   

13.
我国已开始开发含CO2酸性天然气气田,此类气田的开发要求同时重视天然气的火灾爆炸特性和CO2的窒息危险性,如何确定CO2含量阈值浓度,从而制订相应的防护措施具有重要现实意义。为此,运用实验手段研究了含CO2天然气的爆炸极限,得到了CH4、空气及CO2三种组分气体爆炸范围图。研究表明:当泄漏天然气与空气的混合物中CO2体积分数达到13.86%,CH4体积分数为7.48%时,CH4在此混合气体中的爆炸下限与上限重合。当泄漏天然气与周围空气的混合物中CO2体积分数超过13.86%时,应重点考虑CO2的窒息危害,而在此浓度以下时,则应着重考虑天然气的火灾爆炸危险性。同时,还针对气田安全生产的实际情况提出了相应的对策措施。  相似文献   

14.
大型密闭容器内可燃气体爆燃的火焰速度存在着一个加速过程,压力也不是均匀分布的。根据密闭容器内可燃气体爆燃的实际情况,从流体力学和化学反应动力学出发,利用一步不可逆化学反应模型处理能量的加入过程,通过高精度的差分格式和时间分裂方法,对弱点火条件下密闭容器内可燃气体爆燃的压力场、温度场和浓度场进行了数值模拟,并进行了圆筒形容器内可燃气体爆炸实验。结果表明,最大爆炸压力和最大压力上升速率均与初始压力呈正比。最大压力及其上升速率在燃料组分化学计量浓度的1.1倍左右达到最大值。数值模拟计算结果与实验结果比较,其偏差不超过10%。  相似文献   

15.
在石油、化工、矿业等行业中,密闭容器内可燃气体爆炸的事故屡屡发生,造成了巨大的经济损失和人员伤亡。有效地预测爆炸超压,研究可燃气体爆炸成灾模式及其防治技术具有重要的社会意义和经济意义。为此,从流体力学和化学反应动力学方程出发,建立了数学模型,采用SIMPLE算法,对大型球形密闭容器内可燃气体爆炸过程进行了数值模拟,获得了不同时刻爆燃的速度场、密度场、浓度场、温度场,为工程上防爆、抑爆、泄爆提供了理论基础和数据。  相似文献   

16.
近年来,我国海上油气田的安全检查和环境检查已成为政府部门极为重视的问题,海上油气田定量风险评估作为其中不可少的组成部分也成为研究的焦点之一,为此所需的各种试验研究模型正在建立。为了对平台舱室因爆炸荷载发生破损的变形进行分析,采用能量法建立了板的挠度公式,其计算结果与试验结果比较吻合,为海上油气田定量风险评估及事件升级分析奠定了基础。  相似文献   

17.
开敞空间可燃气云爆炸,尤其是在障碍物诱导下具有极大破坏力的爆炸,会造成巨大的经济损失和人员伤亡。因此,研究约束条件对气云爆炸场的影响,对进一步提出可行的防爆、抑爆方案提供理论依据具有重要意义。为此,建立了开敞空间可燃气云爆炸的实验系统,对半球形乙炔—空气预混气云内半球条栅形障碍物对爆炸威力的影响进行了实验研究。障碍物半径为0.1~0.3 m,条栅宽度为15~60 mm,空隙率为20%~75%,气云半径为0.25~1.25 m。通过对实验数据进行曲线拟合回归,并经方差检验,得到了对实际应用具有指导作用的拟合关系式。  相似文献   

18.
可燃气体或低沸点可燃液体的事故性泄漏,会引发可燃气云爆炸事故。气体爆炸概率成为厂站、陆地及海上油气钻采平台设计中需要考虑的要素之一。为确保生产安全及对相关人员的有效保护,必须确定现场障碍物对爆炸的加强作用。为此,实验研究了内置半球栅条形障碍物半径、栅条宽度与空隙宽度3个参数对可燃气云爆炸场的影响。基于流体力学控制方程组、PDR模型和Bakke Hjertager燃烧模型,通过修改方程源项,考虑障碍物对流动的附加作用及对燃烧速度的影响,建立了可燃气云爆炸的理论模型,并采用SIMPLE算法进行了数值求解。实验结果表明,该类型障碍物对可燃气云爆炸威力有较大的增强作用,最大超压可达无障碍物时的10倍以上。计算结果与实验值相比较,最大相对偏差17.9%,平均相对偏差6.34%。  相似文献   

19.
可燃气体在运输、储存、加工和使用过程中,因可燃气体泄漏而形成的气云爆炸事故,常常会造成巨大的人员伤亡和财产损失。研究气云爆炸的特性和威力,可防范事故,减小损失。中采用有限差分方法编制了求解可燃气云爆炸过程的定解方程的数值模拟程序。方程组中的源项由能量均匀加入法处理,爆炸场中的间断问题通过人工黏性模型处理。经开敞空间乙炔——空气气云爆炸实验结果检验,数值计算结果的偏差在13%以内。计算结果表明,气云半径越大,爆炸最大压力和压力增加速率越大;气云爆热越大,爆炸最大压力和压力增加速率越大。  相似文献   

20.
平板形障碍物对气云爆烯威力加强作用   总被引:3,自引:1,他引:2  
利用一维球形流体力学方程导出了开敞空间可燃气云弱点火条件下爆燃过程的压力分布场,编制了求解压力场的计算程序,解释了平板形物体气云爆燃威力的加强作用.进行了乙炔-空气气云的爆燃实验,对计算结果进行了考核.计算结果与实验结果的偏差小于20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号