首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
陡倾层状岩质斜坡极限平衡稳定分析   总被引:5,自引:0,他引:5  
针对自然界中的层状岩质滑坡绝大部分呈现出明显的三维形态特征,在倾倒破坏极限平衡二维推导分析方法的基础上,考虑层状岩质斜坡的三维受力状态,进行三维力系的简化与等效,提出了考虑三维受力的倾倒分析方法,在考虑真倾角方向的倾倒极限平衡分析中,将层状岩质滑坡近似为悬臂梁处理。并以重庆鸡冠岭滑坡为例进行验证分析。计算结果表明:1自然状态下,鸡冠岭斜坡处于稳定状态;2地下采空状态下,鸡冠岭煤层上覆岩层逐层发生倾倒破坏,并挤压下伏阻滑关键块体,导致关键块体剪出破坏后形成滑坡。该分析结果与实际情况基本一致。  相似文献   

2.
 马达岭滑坡是典型的采矿诱发型滑坡,自然斜坡为平缓反倾层状结构。以马达岭滑坡为原型,采用物理模拟方法,研究两层开采条件下采动斜坡的变形过程,并分析该类斜坡变形破坏的地质力学模式。研究表明:煤层开采后采空区边界上覆岩体产生应力集中,导致采动裂隙首先产生于该部位,以陡倾竖向倾倒式裂隙为主,裂隙向采空区中部扩展并逐渐形成离层裂隙和剪切裂隙;变形稳定后采空区上覆岩层弯曲,在地表形成沉陷区;受采空区上覆岩层沉陷的推挤作用,外侧坡体沿煤层向坡外滑移,导致坡体下部隆起。该类斜坡变形破坏的地质力学模式可以分为:弯曲–拉裂(“表生”改造阶段)、塑流–拉裂、蠕滑–拉裂3个阶段。  相似文献   

3.
缓倾角层状岩质边坡小危岩体失稳破坏模式与稳定性评价   总被引:6,自引:0,他引:6  
缓倾角层状岩质边坡是小危岩体出露的主要坡型之一。影响小危岩体失稳破坏的主要因素为边坡地形条件、地层岩性和岩体结构,诱发因素有暴雨、地震和人工开挖等。小危岩体失稳破坏的基本模式可概化为倾倒-崩落、拉裂-崩落和滑落-落3种。当缓倾内层状岩质边坡的岩层较厚,岩性呈软硬互层状产出,或岩层间软弱夹层较厚时,常发生倾倒-崩落式破坏;当缓倾内层状岩质边坡的岩层较薄,且岩性较均一,或层间结构面力学性质较好时,常发生拉裂-崩落式破坏;当缓倾角层状岩质边坡岩层倾向坡外时,在陡倾构造节理和风化卸荷裂隙切割下,常发生滑移-崩落式破坏。针对这3种破坏模式,提出相应的稳定性评价理论和方法。最后,以一修理厂陡崖边坡为例,系统阐述缓倾角层状岩质边坡小危岩体稳定性评价理论和方法。  相似文献   

4.
基于临空条件变化对倾倒变形斜坡影响的认识,以澜沧江古水水电站倾倒变形边坡为原型,通过3组斜坡模型的离心试验,模拟不同坡角条件下反倾层状斜坡的变形演化与破坏过程,获得坡角变化与倾倒变形发展演化之间的关系.研究结果表明:反倾斜坡倾倒破坏最先发生在坡脚位置,而后向上部发展.坡角越陡,产生这种变形需要的累积时间越短;反倾层状岩...  相似文献   

5.
长河坝水电站右坝肩边坡裂缝成因分析   总被引:1,自引:0,他引:1  
 大渡河长河坝水电站右岸坝肩边坡属于高陡岩质边坡,在开挖过程中先后出现16条贯通性裂缝,对边坡稳定与后续施工安全均存在影响。结合工程地质条件、岩体结构特征与监测成果,确定坡体的主要变形区域和主滑方向,分析坡体变形与裂缝形成的主要成因,以及边坡的潜在失稳模式,提出进一步开挖与支护建议。开挖使J1组结构面临空,导致边坡下部岩体沿J1组结构面产生剪切滑移变形,上部岩体沿J4组结构面产生拉裂,坡顶板裂状岩体倾倒变形;F0断层及其下盘岩体压缩变形,上盘岩体下沉加剧这种变形破裂。边坡变形破坏模式为前缘滑移–中部拉裂–后缘倾倒型破坏。采取强化加固措施后,裂缝变形得到控制,边坡基本达到稳定要求。  相似文献   

6.
陡倾顺层岩质斜坡倾倒变形破坏特征研究   总被引:7,自引:1,他引:6  
 顺层岩质斜坡是常见的斜坡结构类型之一,对该类斜坡的变形破坏特征以及形成机制研究已较深入,一般认为顺层岩质斜坡的变形破坏以滑移–拉裂、滑移–弯曲(或溃曲)模式为特征。通过系统的文献收集及大量现场调查发现,陡倾顺层岩质斜坡还存在一种典型的变形破坏形式,即倾倒变形。结合具体的陡倾顺层岩质斜坡倾倒变形破坏的实例,详细分析、总结该类斜坡发育的地质环境条件及变形破坏特征,在此基础上结合典型斜坡分析陡倾顺层岩质斜坡倾倒变形是在河谷演化、成坡过程中,岩层在平行坡面的最大主应力作用下由坡脚开始从下至上作悬臂梁弯曲,最终导致岩层根部折断,形成倾倒体;当坡体内折断带的剪应力超过其抗剪强度时,坡体将发生滑动形成滑坡。  相似文献   

7.
中国西南高陡岩溶山区崩滑灾害频发,长期地下采矿活动是该区域崩滑灾害的重要诱因之一。采动作用下,坡体后缘深大结构面扩展演化控制着高陡岩溶坡体稳定性和失稳破坏模式。在野外地质调查基础上,结合室内物理模型试验和离散元数值模拟,揭示了地下开采扰动下覆岩裂隙扩展演化规律,阐明了深大结构面对边坡稳定性的控制作用,讨论了坡体变形的破坏模式。结果表明:地下开采扰动对斜坡体稳定性的影响主要表现在地下采动卸荷引起覆岩应力重分布、山体变形诱使裂隙扩展;地下采空后,斜坡体在二维剖面上形成类似“悬臂梁结构”,坡体原有深大结构面控制坡体稳定性;下行开采条件下,采空范围在断层之前,山体高度较小,在自重作用下“悬臂梁结构”岩层向断层及采空区方向协同变形,不会产生大量离层裂隙,煤层顶板仅发生断裂坍塌并充填采空区,采空至断层后,左侧山体已发生塌落,山体应力重分布,覆岩在自重作用下形成大量张拉裂隙,直接顶塌落高度与裂隙带高度也随采空区范围增加而增加。其变形破坏演化过程可概化为:地下开采卸荷–应力重分布→覆岩断裂下沉–裂隙扩展→坡体裂隙贯通–悬臂破坏→坡中变形挤出–岩桥剪断→坡体整体失稳破坏。  相似文献   

8.
针对软硬互层状反倾岩质边坡倾倒变形演化模式尚不明确的问题,基于相似原理以及地质资料,以水泥、石膏等作为相似材料建立3组边坡物理模型:一组为单一硬岩层状反倾岩质边坡,另外2组为不同层厚比的软硬互层状反倾岩质边坡。通过离心模型试验,运用图像量测技术,探究软硬互层状反倾岩质边坡与单一硬岩层状反倾岩质边坡倾倒变形破坏模式的差异性,分析不同软硬岩层厚比中软岩对于边坡整体倾倒变形程度以及边坡极限承载力的影响。研究表明:(1)软硬互层状反倾岩质边坡倾倒变形模式与单一硬岩层状反倾岩质边坡倾倒变形模式存在差异。前者在倾倒变形过程中产生两级破裂面:主破裂面与次级破裂面,次级破裂面首先贯通,其上浅层岩体失稳,进而深部不连续弯折带相互贯通,主破裂面形成,边坡整体失稳,向下垮落。(2)倾倒变形过程中主破裂面以下岩体几乎未发生倾倒,可将该面定义为倾倒–未倾倒岩体的分界线;次级破裂面发育深度与主破裂面相比更浅,但是其上浅层岩体倾倒变形程度更大,且更易发生失稳破坏,该面为边坡倾倒变形的最危险破裂面。(3)由于软岩强度较弱的影响,软硬互层状反倾岩质边坡其破裂面形态呈弧线形,与单一硬岩层状反倾岩质边坡不同。(4)软岩的存在对于边坡的极限承载力与倾倒变形程度也有影响,且软硬岩层厚比不同,影响不同。相比于单一硬岩层状反倾岩质边坡,软硬岩层厚比为1∶1的软硬互层状反倾岩质边坡,其极限承载力提高,倾倒变形程度减小;而软硬岩层厚比为2∶1的软硬互层状反倾岩质边坡,其极限承载力降低,倾倒变形程度增大。  相似文献   

9.
以青藏高原金沙江流域雪隆囊地区贡扎滑坡滑前斜坡为原型,设计并完成薄厚岩组合型反倾岩体斜坡振动台模型试验,研究薄厚岩组合型反倾岩体斜坡的动力响应和破坏机制。试验结果表明,在斜坡1/2坡高以上PGA放大系数增大明显;在斜坡不同高程处,由坡内到坡表,PGA放大系数变化规律不同;在斜坡高陡区PGA放大系数增大,在斜坡坡脚处PGA放大系数减小。输入地震波的频率、幅值和时间压缩比均会对斜坡动力响应产生比较大的影响。当输入波幅值比较大时,高频波激励下斜坡PGA放大系数显著增大;当输入波频率小于斜坡自振频率时,随输入波频率增加,PGA放大系数增大,超过斜坡自振频率后,坡表PGA放大系数减小,坡内PGA放大系数先减小后增大。输入波幅值对斜坡动力响应的影响与输入波类型有关,不同类型输入波激励下斜坡动力响应规律不同。不同倍数时间压缩比下,斜坡动力响应有较大变化。综合分析斜坡动力响应和高速摄像机拍照记录,坡表高陡区PGA放大系数最大,坡内PGA放大系数沿高程变化规律基本遵循高程效应。斜坡自振频率在0.2 g幅值输入波激励时下降显著,此时斜坡结构在地震作用下发生变化。斜坡破坏模式为:高陡区上部坡肩出现裂缝→裂缝区向下扩展→高陡区右上侧出现局部失稳破坏→失稳区扩大为整个高陡区域→高陡区岩体由上到下被震落同时伴随着部分下部薄岩块被震落,破坏过程中伴随着斜坡下半段轻微隆起。该试验揭示了薄厚岩组合型反倾岩体斜坡在地震作用下的动力响应规律和破坏机制,为此类斜坡的防治提供了依据。  相似文献   

10.
以青藏高原金沙江流域雪隆囊地区贡扎滑坡滑前斜坡为原型,设计并完成薄厚岩组合型反倾岩体斜坡振动台模型试验,研究薄厚岩组合型反倾岩体斜坡的动力响应和破坏机制。试验结果表明,在斜坡1/2坡高以上PGA放大系数增大明显;在斜坡不同高程处,由坡内到坡表,PGA放大系数变化规律不同;在斜坡高陡区PGA放大系数增大,在斜坡坡脚处PGA放大系数减小。输入地震波的频率、幅值和时间压缩比均会对斜坡动力响应产生比较大的影响。当输入波幅值比较大时,高频波激励下斜坡PGA放大系数显著增大;当输入波频率小于斜坡自振频率时,随输入波频率增加,PGA放大系数增大,超过斜坡自振频率后,坡表PGA放大系数减小,坡内PGA放大系数先减小后增大。输入波幅值对斜坡动力响应的影响与输入波类型有关,不同类型输入波激励下斜坡动力响应规律不同。不同倍数时间压缩比下,斜坡动力响应有较大变化。综合分析斜坡动力响应和高速摄像机拍照记录,坡表高陡区PGA放大系数最大,坡内PGA放大系数沿高程变化规律基本遵循高程效应。斜坡自振频率在0.2 g幅值输入波激励时下降显著,此时斜坡结构在地震作用下发生变化。斜坡破坏模式为:高陡区上部坡肩出现裂缝→裂缝区向下扩展→高陡区右上侧出现局部失稳破坏→失稳区扩大为整个高陡区域→高陡区岩体由上到下被震落同时伴随着部分下部薄岩块被震落,破坏过程中伴随着斜坡下半段轻微隆起。该试验揭示了薄厚岩组合型反倾岩体斜坡在地震作用下的动力响应规律和破坏机制,为此类斜坡的防治提供了依据。  相似文献   

11.
倾倒破坏是反倾边坡的一种常见破坏模式,其中次生倾倒是反倾岩质边坡倾倒破坏的主要诱因。建立了反倾岩层在坡后土体作用下次生倾倒破坏的地质力学模型,基于室内物理模拟试验,分析了反倾岩层上覆土压力分布规律、岩层的破坏模式和整体破坏面的形状与位置。根据库仑主动土压力理论得到下卧岩层表面各点法向压力的理论值与实测值基本相符,土体中存在土拱效应导致两者存在差异,随着上覆土体厚度及堆载作用的加大,土拱效应越明显。各岩层可能的破坏模式包括弯拉破坏、弯滑破坏和滑动破坏。下卧反倾岩层的整体破坏面是一通过坡脚的近似平面,整体破坏面与岩层层面法线方向呈0°~25°的夹角。基于叠合悬臂梁模型,引入岩层横截面上节理面的黏聚力和岩石抗拉强度随岩层嵌入深度的折减系数,改进了反倾岩层的极限平衡分析方法,推导了坡体任意岩层下推力的理论公式,定义了任意岩层变形破坏的安全系数和边坡整体倾倒破坏的综合安全系数。提出了下卧反倾岩层潜在整体破坏面的理论计算方法,并确定了影响潜在整体破坏面位置的敏感因素。  相似文献   

12.
 介绍彭水水电站地下主厂房洞室施工过程中高边墙围岩的变形破坏特征、相应的加固处理措施以及围岩监测成果等;在此基础上,开展主厂房围岩施工期的动态反馈分析。研究结果表明:对于陡倾角层状岩体中开挖的大型地下洞室群,围岩中分布的软弱结构面和岩层层面对上、下游边墙的变形与稳定起着控制性作用,陡倾角、顺向岩层组合的高边墙其变形失稳模式以典型的滑移破坏为主;而陡倾角、逆向岩层组合的高边墙则以沿层面的张裂、折断、倾倒变形后的坍塌破坏为主。通过开展施工期围岩监测反馈分析,为彭水水电站地下厂房的动态设计和信息化施工提供了重要依据。  相似文献   

13.

Complex block-flexure slope toppling is observed in interbedded sandstone and slate in the upper Yellow River, China. Block toppling is observed in the relatively hard sandstone and flexural toppling is observed in the relatively soft slate. The evolution of toppling slope deformation is characterized by long-term progress and spatial variability. In order to study these characteristics, field investigations, adit prospecting, borehole drilling, sonic tests and numerical simulation were carried out. In addition, the effect of the structure, the composite mode of the rock mass, the unloading fissures and geomorphology are discussed. Furthermore, we explored the toppling mechanisms and simulated it numerically; on this basis, the slope evolution is divided into four stages. Results obtained from the numerical simulation compared well with field investigation data (investigation data, rock sonic survey and strata dip statistics). Comparative studies have demonstrated that the analytical methods presented in this paper are appropriate for back analysis of the toppling evolution process. The result showed that this toppling slope has not yet entered the later progressivity failure stage and is currently limited to collapse at shallow levels, whereas the deep-seated rock mass will remain stable for a long time. This study might provide reference for a stability evaluation and hazard prevention analysis for rock toppling.

  相似文献   

14.

In order to investigate the seismic response of steep bedding and toppling rock slopes, a large-scale shaking table test was performed taking into consideration a variety of factors such as slope type and input seismic excitation. Diverse seismic responses, including acceleration and earth pressure at several locations, were analyzed in terms of the test results. It was found that the slope type has a significant impact on the failure mechanism and response norm of different kinds of rock slopes. Firstly, the slide surface of the steep bedding rock slope is basically parallel to the slope surface, while that of toppling rock slope skews the rock layer under seismic load. The failure zone area of the toppling rock slope is smaller than that of the bedding rock slope, which is mainly because it consumes plenty of seismic energy to break through the rock layer of the toppling rock slope. In addition, for acceleration along the vertical direction, an abrupt amplifying effect exists at the top slope when the peak input motion acceleration (PIMA) exceeds a certain value: 0.6 g for a bedding rock slope and 0.4 g for a toppling rock slope. Meanwhile, for acceleration along the horizontal direction, the acceleration amplifying factors of toppling rock slopes are larger at the slope surface but smaller at the inner slope portion than that of bedding rock slopes. Furthermore, the acceleration amplifying factor is larger than the earth pressure amplifying factor at the slope surface. The earth pressure amplifying factor at the top surface for a toppling rock slope is close to that of a bedding rock slope with an increase in PIMA. This novel experiment reveals the different failure mechanisms between steep bedding and toppling rock slopes, as well as being of help to the conduct of further study on seismic hazard early warnings.

  相似文献   

15.
 以武隆鸡尾山滑坡为例,通过地质条件、采矿扰动等分析,运用FLAC3D模拟,研究在重力、岩溶、底部采矿活动等因素下山体的变形破坏特征,认为斜倾厚层山体滑坡视向滑动应具备5个条件:(1) 层状块裂结构,滑坡体被多组不连续面切割,呈积木块体,离散性好;(2) 山体倾向阻挡,受下部稳定山体阻挡,迫使滑坡体沿真倾角方向顺层滑动偏转为视倾角方向滑动;(3) 临空视向剪出,滑坡体视倾角方向斜坡被河流、沟谷深切,为滑坡体提供了转向滑动的临空面;(4) 驱动块体下滑,山体后部的积木块体沿软弱层面长期蠕动,抗剪强度由峰值逐渐趋向残余值,下滑力逐渐增加;(5) 关键块体阻滑,下滑驱动块体沿视倾角方向滑动前缘存在一相对稳定的块体,随下滑推力增大和内部强度降低,沿损伤带瞬时脆性剪断,形成整体滑动,因此,对这类斜倾层状结构的山体地质灾害的监测和防治必须以前缘阻滑的关键块体为重点。在此类斜倾厚层山体中,矿层大都位于滑带100 m之下,因此,采矿活动主要通过应力环境的调整和层状块裂岩体的差异沉降2种方式对滑坡构成扰动。  相似文献   

16.
陡倾岩层隧道由于层状结构的存在,在开挖过程中,围岩的破坏机理与方式、围岩与结构的变形、受力等特征明显不同于其它岩体隧道。本文在陡倾岩层隧道开挖破坏机理探讨的基础上,通过三维数值模拟,对不同陡倾角条件下围岩与结构的变形、受力特征进行了计算,分析了隧道开挖力学特性与倾角的关系,提出了陡倾岩层隧道设计施工建议。计算结果表明:倾角越大,隧道发生顺层滑移破坏的概率越大,地表沉降、拱顶位移、围岩主应力随倾角的增大而增大,但拱脚位移、围岩剪应力、喷射混凝土内力与倾角并非一致性关系。  相似文献   

17.
反倾层状岩体边坡稳定性的数值分析   总被引:5,自引:1,他引:4  
 反倾层状岩体边坡的破坏和普通的滑坡不同,其破坏过程和破坏机制尚未十分清晰。弯曲倾倒是其中的一种特殊破坏形式,这种形式的边坡破坏和地质构造有很大的关系,用通常的连续介质理论不能很好地模拟和解析。根据不连续体理论,利用离散元软件UDEC,模拟弯曲倾倒破坏行为,讨论影响边坡稳定性的各种因素,为实际的边坡施工提供参考数据。通过模拟现场的边坡滑移过程,确定合适的分析参数。在此基础上,改变不同的边坡高度、倾角以及岩层的倾角和厚度,总结影响边坡稳定性的几个重要因素的相互关系。模拟结果表明,除了岩层间的力学参数以外,岩体边坡的稳定性还受岩层的厚度、倾角/走向以及人工边坡倾角的影响。这几个因素相互影响,相互制约边坡的稳定性。人工边坡的设计及施工应该对这几个因素综合考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号