首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对如何提高混凝土面板堆石坝设计效率和设计质量、更好地挖掘潜力、节省坝料的问题,通过分析混凝土面板堆石坝的结构、受力特点,研究建立了面板坝优化设计的数学模型,运用复形法进行了面板坝的优化设计研究。计算实例表明该优化设计方法是可行、合理的。该项研究丰富了面板堆石坝优化设计的内容,具有重要的理论价值和参考应用价值。  相似文献   

2.
为了避免面板浇筑后堆石体的大量或不均匀变形,最新提出通过对堆石体填筑施工初期的监测资料进行整理和分析,对比邓肯模型、双屈服面弹塑性模型及清华非线性K—G模型在堆石坝应用的优缺点。结合施工初期的实测信息,确定在特定条件下最能反映堆石体真实情况的本构模型,利用BP神经网络结合遗传算法反演模型的最优参数,再正分析计算预测的堆石体施工期的沉降变形情况。将预测得到的沉降变形资料与堆石体填筑完成的实测沉降变形资料进行对比分析,以预测的堆石体沉降变形情况为参考数据,结合工程的实际要求,合理安排预留沉降期,进而确定合理的面板浇筑时机,避免堆石体较大的前期沉降变形对面板带来的不利影响,有效改善面板受力和变形情况。  相似文献   

3.
考虑到面板堆石坝上游面板结构处各种接缝的尺寸与整个坝体模型差异过大,且其变形具有非连续性,从而会导致在有限元计算时出现求解困难或者精度不足的问题。尝试在ADINA有限元分析软件中用子模型法把面板及面板周边的混凝土趾板从面板堆石坝的整体模型中脱离出来作为研究对象,其优点在于方便实施,且可以采用精细的单元网格以获得更高精度的计算解。同时,子模型法对面板的垂直缝和周边缝以及面板与垫层接触部位也可进行详细模拟。通过工程实例计算,并进行结果合理性分析,在验证了面板堆石坝接缝等细部结构分析中采用子模型法具有较高精度和合理性的同时,重点对面板及其接缝部位的变形分布规律进行了探讨。  相似文献   

4.
高面板堆石坝应力变形分析的三维子模型法研究   总被引:4,自引:0,他引:4  
面板堆石坝的变形分析是复杂的三维"非连续变形"问题.针对这一问题,对MSC.Marc有限元程序进行了二次开发,发展了三维子模型法,模拟了面板3个方向的边界、复杂的材料分区与施工过程,对目前世界最高的水布垭面板堆石坝进行了数值仿真,有效地解决了目前存在的数值分析精度偏低的问题.  相似文献   

5.
以覆盖层地基上混凝土面板堆石坝工程造价最小为目标,以趾板长度、上游坝坡角、主堆石料与下游堆石分界坡角、上游坝坡角为设计变量,以坝体几何尺寸为约束,建立了面板堆石坝的数学优化模型.介绍了MATLAB优化工具箱的使用,并选择合适的算法求解优化模型.结果表明:MATLAB优化工具箱可方便快捷的求出优化结果,同时提高设计效率.  相似文献   

6.
采用基于增量法的非线性有限元分析方法,对某混凝土面板堆石坝坝体及面板在施工期和蓄水期的应力变形特性进行了分析、研究,给出了坝体各部分的应力、位移分布规律。本文的中点增量法具有分级迭代易于收敛、计算精度较高的优点,其计算成果说明此算法是有效的;该计算分析成果可以为实际工程的混凝土面板堆石坝设计、施工提供依据,对其它类似工程也具有一定的参考价值。  相似文献   

7.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

8.
针对基本粒子群算法(PSO)寻优过程中存在收敛速度慢、易陷入局部最优和计算精度差等缺陷,采用分簇思想和碰撞策略,提出了一种改进的粒子群算法(C-PSO),在该算法中,粒子通过分簇并行搜索,有效避免了群体过度集中现象,极大地增强粒子全局搜索能力。将C-PSO算法应用于混凝土面板堆石坝断面优化设计中,优化结果表明,该算法对解决复杂的多变量多约束非线性问题具有较好的适应性,为复杂的混凝土面板堆石坝断面优化设计问题提供了新的解决思路。  相似文献   

9.
结合实测数据建立了面板堆石坝坝体变形量的BP神经网络预测模型,并引入遗传算法对其进行优化,结果表明经遗传算法优化后的模型预测结果要优于未优化模型的预测结果,优化模型具有更高的预测精度和更强的预测能力。基于某在建工程实例验证了本方法的可行性与实效性,预测结果不仅满足工程安全要求,而且具有较好的可信度和工程参考价值。在上述优化预测模型基础上,实现了引入施工沉降作为输入量对面板挠度进行精确预测,证明了应用这种方法进行面板挠度预测的合理性和优越性。  相似文献   

10.
混凝土面板的损伤开裂是威胁面板堆石坝安全的重要因素,纤维混凝土是减小面板开裂的工程措施之一。本文将钢纤维混凝土的本构关系引入到了塑性损伤模型中,并联合广义塑性模型,对200 m级的面板堆石坝进行了弹塑性地震反应分析,分别研究了钢筋混凝土面板和钢纤维混凝土面板的动力损伤及发展过程,并考虑了不同钢纤维含量的影响。结果表明,塑性损伤模型可以较好地模拟钢纤维混凝土的应力-应变关系;钢含量相同时,钢筋混凝土面板和钢纤维混凝土面板的损伤区域均在2/3坝高以上;相比于钢筋混凝土面板,钢纤维混凝土面板地震损伤程度降低了18%,损伤范围减小55%;钢纤维含量从70 kg/m3增加到110 kg/m3后,钢纤维混凝土面板的损伤程度降低14%,损伤范围减小80%。研究结果对钢纤维混凝土应用于强震区面板坝的面板抗裂和提高大坝极限抗震能力提供了依据。  相似文献   

11.
简单介绍了公伯峡面板堆石坝面板应变应力监测概况,采用实测资料详细分析面板应变、应力状况,结合结构有限元计算成果,对面板运行性态做出评价,为大坝安全定期检查提供依据。  相似文献   

12.
介绍了广西罗城县宝坛水电站陇或混凝土面板堆石坝的构造、软岩坝料填筑、坝基处理、坝肩滑坡体处理的设计特点。  相似文献   

13.
万里  罗永祥  黄刚  范建朋 《西北水电》2007,(4):37-39,48
随着混凝土面板堆石坝高度的逐渐增加,大坝堆石体的后期变形以及窄河谷内堆石体拱效应对大坝面板的变形和应力的影响愈发显著,致使河床中部的面板混凝土出现了不同程度的挤压破坏现象。分析面板混凝土挤压破坏的原因,并结合马来西亚巴贡混凝土面板堆石坝设计和施工状况,提出了一些预防措施,供大家探讨。  相似文献   

14.
混凝土面板坝趾板体型设计   总被引:1,自引:0,他引:1  
根据库克建议的趾板体型设计新思想,结合水布垭面板堆石坝趾板结构的具体设计,对趾板体型设计相关的"Y"线的定位、标准剖面体型参数的确定、趾板坐标的计算等进行了阐述.提出了运用向量法建立空间局部坐标系与整体坐标系的转换关系,从而使趾板坐标计算简捷方便,且易于设计修改.对计算方法和坐标转换关系作了详细介绍,可直接运用于类似工程设计,从而使设计工作量大为减少.  相似文献   

15.
面板堆石坝面板开裂机理与防止措施研究   总被引:4,自引:1,他引:4  
孙役  燕乔  王云清 《水力发电》2004,30(2):30-32
针对面板堆石坝面板在施工过程及蓄水时的实际受力变形特点,对面板的开裂机理进行了深入探讨。通过分析发现,混凝土干缩和温度应力是造成面板早期细小裂缝产生的主要因素,而坝体变形所造成的对面板的剪切挤压力、面板的自重以及施工期反向水压力则是造成面板后期呈规律性开裂的主要因素。为改善面板的受力条件,提高面板的防渗能力,同时方便施工,从材料、结构和施工三个方面提出了防止措施的建议。  相似文献   

16.
李振连  陈连军  张丹 《人民长江》2012,43(16):45-48
潘口水电站混凝土面板堆石坝面板混凝土采用分期连续施工方案。经室内试验论证,在混凝土中掺入2%水泥用量的WHDF增密剂,可提高混凝土的和易性和施工性能。大坝面板混凝土施工跨越春夏两季,施工期气温高,通过采取常规的温控措施,减少了面板裂缝发生。完工后检查,面板混凝土质量满足设计要求,裂缝数量与国内类似工程相近。裂缝表面封闭采用喷涂聚脲技术,效果检查良好。  相似文献   

17.
我国混凝土面板堆石坝的发展与经验   总被引:9,自引:0,他引:9  
蒋国澄 《水力发电》1999,(10):45-48
我国混凝土面板堆石坝建设经过10多年的发展,取得了丰硕的成果,到1998年底已建成42座,在建32座,待建的更多。目前无论在数量上还是规模上都居世界前列,在技术上也有所创新和改进、主要表现在对地形地质条件的适应性,枢纽布置考虑土石方平衡、泄洪建筑物布置、坝体分区和筑坝材料应用、面板混凝土、接缝止水结构和材料、施工导流与渡汛等方面。  相似文献   

18.
刍议混凝土面板堆石坝安全监测设计   总被引:2,自引:0,他引:2  
针对混凝土面板堆石坝安全监测的设计,分析了设计任务和设计原则;阐述了监测项目的选取和变形监测、渗流监测、应力应变及温度监测的布置。  相似文献   

19.
珊溪水库混凝土面板堆石坝一期面板最大长度为 144m ,属国内一次性连续浇筑的最大长度 ,对普通混凝土来说 ,产生裂缝是不可避免的。但十二局施工科研所通过对珊溪水库面板混凝土防裂技术研究 ,增加了限制膨胀率e这个参数 ,即 2 81× 10 -4 ≤e≤ 6 73× 10 -4 ,有效地控制了收缩补偿和膨胀限制 ,从而避免或减少了由于面板混凝土收缩而引起的裂缝。经检验未发现裂缝 ,取得了预期的防裂效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号