首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper presents a novel axisymmetric floating energy harvester associated with hydraulic cylinders and gear rack mechanism to harness wave energy. The harvester collects energy in surge, heave, and pitch modes. The mathematical models for the harvester are developed to analyze the performance and the harvested power. The Pierson‐Moskowitz two‐parameter spectrum was utilized to model the incident waves. The retardation function for the radiation force and the added mass curve are fitted based on the least squares method. The irregular exciting force, the displacement, the velocity, and the power harvesting of the axisymmetric floating energy harvesters in three motion modes with irregular waves are simulated. The effects of harvester design parameters and the geometry shape variation of the submerged part on the wave‐exciting force, the displacement, the velocity, the harvested power, and the harvesting efficiency are investigated. Under the same output damping and the same parameters with the radius of 4 m, the submerged height of 4 m, the above‐water height of 2 m, and the center of mass of ?1 m, the cylinder wave‐exciting force in surge is highest among three shapes, the cone wave‐exciting force is highest among three shapes in heave and pitch modes, and the total harvested power and the efficiency of the cylinder‐shaped harvester are the highest among three different axisymmetric shapes, which are 40.521 kW and 62.96%, respectively. The harvested power and the efficiency differences between the cylinder and the cone are 1.571 kW and 2.4%, and the differences between the cylinder and the halfsphere are 8.543 kW and 13.28%. For the cylinder‐shaped harvester with the submerged height of 4 m, the above‐water height of 2 m, and the center of mass of ?1 m, when the radius increases from 3 m to 5 m, under the optimal output damping, the total harvested power and the harvesting efficiency increase by 38.811 kW and 35.83%, respectively. For the cylinder‐shaped harvester with the radius of 4 m and the above‐water height of 2 m, as the submerged part height increases from 2 to 4 m, the total harvested power and the harvesting efficiency increase by 15.776 kW and 24.51%, respectively. For the cylinder‐shaped harvester with the radius of 4 m, the submerged height of 4 m, and the above‐water height of 2 m, as the center of mass is reduced from 0 to ?1 m, the total harvested power and the harvesting efficiency rise by 15.153 kW and 23.54%, respectively.  相似文献   

2.
Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustainability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter.  相似文献   

3.
An electrical approach to wave energy conversion   总被引:2,自引:0,他引:2  
Motions in nature, for example ocean waves, can play a significant role in tomorrow's electricity production, but the constructions require adaptations to its media. Engineers planning hydropower plants have always taken natural conditions, such as fall height, speed of flow, and geometry, as basic design parameters and constraints in the design. The present paper describes a novel approach for electric power conversion of the vast ocean wave energy. The suggested linear electric energy converter is adapted to the natural wave motion using straightforward technology. Extensive simulations of the wave energy concept are presented, along with results from the experimental setup of a multisided permanent magnet linear generator. The prototype is designed through systematic electromagnetic field calculations. The experimental results are used for the verification of measurements in the design process of future full-scale direct wave energy converters. The present paper, describes the energy conversion concept from a system perspective, and also discusses the economical and some environmental considerations for the project.  相似文献   

4.
This work presents the fabrication and testing of a vibration-based single energy hybrid harvester (VSEHH). Electromagnetic and piezoelectric transduction mechanisms are utilized for energy extraction in the developed harvester. Electromagnetic portion of the device composed of a permanent magnet, planar coil and wound coil, however, for piezoelectric portion polyvinylidene difluoride (PVDF) membrane is used. In the harvester the PVDF membrane having the magnet is kept loose in order to exploit the spring softening nonlinearity. At lower base excitation levels (less than 0.5g) the response of the VSEHH is linear, however, from 0.5 to 2.5g the harvester exhibits spring softening nonlinearity and at acceleration levels greater than 2.5g, the spring hardening nonlinearity is invoked. Because of nonlinear behavior of the harvester, the shift of resonant frequency, the sudden jump-up and jump-down phenomena result in the enhancement of the harvester's frequency bandwidth. Under sinusoidal excitation and at 123 Hz frequency and 4g acceleration, the electromagnetic portion of the harvester produced 40.6 mV load voltage and 212.7 μW with planar coil and 73.5 mV load voltage and 319.1 μW power with wound coil. Moreover, under the same vibrations condition a load voltage of 2930 mV and power of 57.6 μW is generated by the piezoelectric portion of the harvester. Collectively, the harvester is capable of producing a power of 589.4 μW and a power density of 334.13 μW/cm3. Furthermore, when subjected to broadband random vibrations, two central frequency peaks are produced, one is due to spring softening and the other corresponds to the spring hardening of the membrane.  相似文献   

5.
The present experimental study investigates the generation and propagation of regular water waves and their interactions with an in-house fabricated horizontal-axis 3-bladed Savonius rotor in an experimental wave flume (EWF) equipped with a piston-type wave maker with active absorption capability to assess the rotor performance for different parametric conditions namely, wave height, wave period and submergence level in intermediate-to-shallow water depths. The motion of the wave particles around the Savonius rotor is observed during the experiments as well as measuring the power and torque performance of the rotor to make a reliable assessment of the water movement with the rotor positioning for different inflow wave boundary conditions. The wave-to-mechanical energy conversion efficiency (ECE) of the present device is determined for each case to suggest a possible optimum positioning accompanied with optimum wave heights and frequencies for the manufactured small scale prototype. The present results suggest that experimental solutions within the wave flume can provide a proper guideline for performance analysis of such devices in intermediate-to-shallow water depths for further studies of optimization of design of Savonius rotor type sea and/or ocean wave energy conversion devices for different operating conditions provided that optimum physical flow conditions are satisfied.  相似文献   

6.
Wave energy is an important renewable energy source. Previous studies of wave energy conversion (WEC) have focused on the maximum power take-off (PTO) techniques of a single machine. However, there is a lack of research on the energy and power quality of wave farm systems. Owing to the pulsating nature of ocean waves and popular PTO devices, the generated electrical power suffers from severe fluctuations. Existing solutions require extra energy storage and overrated power converters for wave power integration. In this study, we developed a master-slave wave farm system with rotor inertia energy storage; this system delivers self-smoothed power output to the grid and reduces the number of converters. Two control methods based on the moving average filter (MAF) and energy filter (EF) are proposed to smooth the output power of wave farms. RTDS simulations show that the proposed systems and control methods facilitate simple and smooth grid integration of wave energy.  相似文献   

7.
In this study, vibration straight‐line displacements occurring during electric vehicle operations are changed into reversely rotating displacements and divided into small segments by a gear unit. Piezoelectric bending elements are used to form a cantilever beam–based energy feedback mechanism for converting vibration energy into electrical power within an allowable displacement range. A virtual vibration displacement filtering algorithm is proposed to effectively filter virtual displacements that cannot excite the energy harvester and generate electrical power. The average speed of the gear exciting the bender has an accuracy 30%, which is increased using this algorithm compared with 2 other algorithms and directly affects the accuracy of calculating the average power generated by the calculation of piezoelectric bending elements. Theoretical and experimental analyses are conducted for the impact of gear pitch on the regeneration power value by changing the gear pitch at a fixed driving speed. Experiments show that when a vehicle is operated at a fixed speed, the proposed method can be used to obtain the maximum average power of a single piezoelectric bending element through determination of a rational gear pitch. Specifically, when the test vehicle operated at 20 and 60 km/h, the gear pitch should have been 7 and 10 mm.  相似文献   

8.
It is often advantageous to generate power with combinations of wind and ocean waves. In fact ocean waves, their generation, propagation, dissipation are directly related to wind velocity and its duration oven the sea. In this paper an attempt has been made to demonstrate statistically to present some advantages with combined wind and ocean wave power generation. Even though many conceptual techniques and methods are possible to harness combined power generation, it is important to test feasibility of combined out put as well as individual outputs mathematically. One of the major advantages of combined wind & wave power generation is to improve probability of continuous power supply (it minimises the interruptions and compensates power fluctuations with one another). Some of the major wave characteristics like wave Height (H), Time period (T), Wave length (L) significantly influence wave power generation. Interestingly, these ocean waves are dependent on wind velocity over ocean. To establish, a relation, a simple mathematical model has been developed to test different sets of combinations with wind velocities and wave characteristics. Statistical analysis has been made to estimate individual as well as combined probability density functions for a range of power outputs. Probability density functions at certain combinations showed promising results and it indicates that, combined power generation improves probability of continuous power supply (i.e. it minimises one of the major criticisms for renewable sources of energy).  相似文献   

9.
Triboelectric nanogenerator (TENG) is a newly proposed technology for effectively converting mechanical energy into electricity. Triboelectric nanogenerator has shown a great potential for harvesting the clean and abundant energy of ocean waves. Recently, a duck‐shaped TENG device has been proposed as a lightweight, cost‐effective, highly stable, and efficient system for scavenging the existing energy in water waves. In this paper, a detailed investigation on the performance of the duck‐shaped TENG is presented. Then, a comparative analysis between the TENG device and an equivalent electromagnetic generator (EMG) for wave energy harvesting is performed. The electric output characteristics of both techniques under various mechanical and electrical conditions are obtained. The analysis demonstrates that at a low operating frequency of 2.5 Hz, the TENG and EMG achieve the peak power density of 213.1 and 144.4 W/m3, respectively. The present paper provides guidance for design and optimization of hybrid TENG and EMG technology toward scavenging the blue energy.  相似文献   

10.
The features of the new designed and constructed harvester are examined. The harvested power of three piezoelectric layers having different masses (i.e. different natural frequencies) has been explored. These layers have the same length around the harvester body, whereas a permanent magnet (PM) attached to the shaft rotates by low speed wind and this PM repels these three piezoelectric layers with a 120° phase shift. Since PM and the PMs located to the tip of the layers do not contact, this system improves the lifetime of the harvester. The measured harvested power in the low wind speeds (i.e. 1.75 m/s) is of the order of 0.2 μW. The waveform includes many subharmonic and superharmonic components, hence the total harmonic distortion (THD) is found around 130%, which is fairly high due to nonlinear effects. Although the system shows an high THD, the 20% of the signal can be rectified and stored in the capacitor for the use of harvested energy. A scenario has also been created for a resistive load of RL = 1 MΩ and 100 kΩ for various wind speeds and it has been proven that the harvester can feed the load at even lower wind speeds. In addition, extra power beyond the usage of the load can be stored into the capacitor. The proposed harvester and its rectifying unit can be a good solution for the energy conversion procedures of low-power required machines.  相似文献   

11.
Energycane is emerging as a candidate bioenergy crop, and it resembles sugarcane in stature and cultivation practices. Preliminary trials indicated that sugarcane billet harvesters have insufficient power to harvest energycane. This study quantified the power requirements of selected harvester components and field performance of harvesters for sugarcane and energycane. The elevator pour rate for energycane was lower (43.3 Mg h−1, wet weight) than for sugarcane (132.7 Mg h−1, wet weight). At the observed pour rates, power consumption of the basecutter, elevator, and the entire harvester was comparable for energycane and sugarcane. However, the power requirements of the chopper were 1.65 times higher for energycane than for sugarcane. Greater stem damage and higher stubble heights were observed for energycane compared to sugarcane. Overflowing of the elevator was observed for energycane because of lower bulk density of the biomass (billets and trash, 143.8 kg m−3) compared to sugarcane (predominantly billets, 349.4 kg m−3). The field capacity of the harvester for energycane (0.32 ha h−1) was lower than for sugarcane (0.61 ha h−1), and the harvesting cost for energycane (5.91 $ Mg−1) was considerably higher than for sugarcane (1.87 $ Mg−1). Design modifications to the existing sugarcane harvester models would be needed to adapt them to harvest energycane.  相似文献   

12.
This paper describes a miniaturized energy harvester based on the interaction of two permanent magnets placed on both ends of a folded cantilever made with piezoelectric thin films. A unique design of the folded cantilever structures is developed to efficiently collect ambient vibrational energy over a wide frequency bandwidth for the operation of battery‐free electronic devices. The output performance of the two energy harvesters is observed to improve significantly through the use of the mutual coupling technique. The folded cantilever structure also demonstrates improved space efficiency compared with the conventional rectangular cantilever design. A wide frequency band and sufficient energy‐harvesting ability were successfully achieved by the optimally manufactured device. The maximum output power of the miniaturized energy harvester was 41.6 μW with an impedance of 0.3 MΩ. Furthermore, a pedometer was powered completely by the energy harvester without the need for any battery and external power source, demonstrating the potential of the proposed design for self‐powered electronics applications in a vibrational environment.  相似文献   

13.
In this study, we propose an optimization scheme for the control of a piezoelectric wind energy harvester. The harvester is constructed by a blade in front and a magnet in the rear in order to sustain a magnetic repulsion by another magnet located on the stable harvester body in a contactless manner. For such a new harvester, the control scheme is missing in the literature in the sense that the harvester is new and an overall optimization study is required for such a device. In that context, the optimization has been realized by using a new current control law based on the harvester piezoelectric terminal voltage and the layer bending. The proposed control law can impose a second order linear dynamics although the magnetic effects can yield to nonlinear magnetic force relation. In order to improve the new control strategy, a Particle Swarm Optimization algorithm (PSO) has been applied, since there is a nonlinear dependency among the control parameters, the collected energy and the bending force mean values. According to results, the captured electrical power has a high increasing trend with respect to the only-voltage-based (OVB) control as the current study proves. On the contrary, the artifact of the method is that the obtained power is too low to increase the mean bending forces and it requires much complicated control system.  相似文献   

14.
In the present study, an energy harvester with coarse passive turbulence control (PTC) structure is represented to harvest piezoelectric wind energy. Wind tunnel experiments are conducted to investigate the influence of the PTC on the vibrational amplitude of the vortex-induced vibration and piezoelectric power output. Parametric studies of the PTC numbers and sizes are presented to determine the optimized PTC structure to enhance the efficiency of piezoelectric energy harvesting. The experimental results show that the specific parameters of θ= 60° and W = 8 mm are the most efficient PTC group for designing a vortex-induced vibration-based energy harvester with the coarse surface device.  相似文献   

15.
The substantial wave energy resource of the US Pacific Northwest (i.e. off the coasts of Washington, Oregon and N. California) is assessed and characterized. Archived spectral records from ten wave measurement buoys operated and maintained by the National Data Buoy Center and the Coastal Data Information Program form the basis of this investigation. Because an ocean wave energy converter must reliably convert the energetic resource and survive operational risks, a comprehensive characterization of the expected range of sea states is essential. Six quantities were calculated to characterize each hourly sea state: omnidirectional wave power, significant wave height, energy period, spectral width, direction of the maximum directionally resolved wave power and directionality coefficient. The temporal variability of these characteristic quantities is depicted at different scales and is seen to be considerable. The mean wave power during the winter months was found to be up to 7 times that of the summer mean. Winter energy flux also tends to have a longer energy period, a narrower spectral width, and a reduced directional spread, when compared to summer months. Locations closer to shore, where the mean water depth is less than 50 m, tended to exhibit lower omnidirectional wave power, but were more uniform directionally. Cumulative distributions of both occurrence and contribution to total energy are presented, over each of the six quantities characterizing the resource. It is clear that the sea states occurring most often are not necessarily those that contribute most to the total incident wave energy. The sea states with the greatest contribution to energy have significant wave heights between 2 and 5 m and energy periods between 8 and 12 s. Sea states with the greatest significant wave heights (e.g.>7 m) contribute little to the annual energy, but are critically important when considering reliability and survivability of ocean wave energy converters.  相似文献   

16.
A nationally consistent wave resource assessment is presented for Australian shelf (<300 m) waters. Wave energy and power were derived from significant wave height and period, and wave direction hindcast using the AusWAM model for the period 1 March 1997 to 29 February 2008 inclusive. The spatial distribution of wave energy and power is available on a 0.1° grid covering 110–156° longitude and 7–46° latitude. Total instantaneous wave energy on the entire Australian shelf is on average 3.47 PJ. Wave power is greatest on the 3000 km-long southern Australian shelf (Tasmania/Victoria, southern Western Australia and South Australia), where it widely attains a time-average value of 25–35 kW m?1 (90th percentile of 60–78 kW m?1), delivering 800–1100 GJ m?1 of energy in an average year. New South Wales and southern Queensland shelves, with moderate levels of wave power (time-average: 10–20 kW m?1; 90th percentile: 20–30 kW m?1), are also potential sites for electricity generation due to them having a similar reliability in resource delivery to the southern margin. Time-average wave power for most of the northern Australian shelf is <10 kW m?1. Seasonal variations in wave power are consistent with regional weather patterns, which are characterised by winter SE trade winds/summer monsoon in the north and winter temperate storms/summer sea breezes in the south. The nationally consistent wave resource assessment for Australian shelf waters can be used to inform policy development and site-selection decisions by industry.  相似文献   

17.
One of the main challenges that our society must overcome in this century is that of finding alternative energy sources to fossil fuels. These, ideally, must be inexpensive, less polluting than current fuels and available for a substantial time. One promising alternative is hydrogen, which has the great advantage that it can be produced by coupling renewable energy devices with water electrolysis. Several projects devoted to connecting photovoltaic and wind systems with electrolysis devices have been successful; however, little research has been done into the coupling of ocean wave energy converters with water electrolysis. The work here proposes a basic system that stores the energy from waves in the form of hydrogen. The WEC considered is a novel design known as a Blow-Jet, which captures waves and converts them into a water jet. The performance of the Blow-Jet is found to depend more on wavelength than on wave height. The electrolyser results show, at 0.200 A and 1.88 V, that the electrolysis of water produces 0.082 Nl h−1 of hydrogen and a current efficiency (ηI) of 90.58%.  相似文献   

18.
The hydrogen dispersion phenomenon in an enclosure depends on the ratio of the gas buoyancy-induced momentum and diffusive motions. Random diffusive motions of individual gas particles become dominative when the release momentum is low, and a uniform hydrogen concentration appears in the enclosure instead of the gas cumulation below the ceiling. The expected hydrogen behavior could be projected by the Froude number, which value ~1 predicts a decline of buoyancy. This paper justifies this hypothesis by demonstrating full-scale experimental results of hydrogen dispersion within a confined space under six different release variations. During the experiments, hydrogen was released into the test room of 60 m3 volume in two methods: through a nozzle and through 21 points evenly distributed on the emission box cover (multi-point release). Each release method was tested with three volume flow rates (3.2 × 10−3 m3/s, 1.6 × 10−3 m3/s, 3.3 × 10−4 m3/s). The tests confirm the decrease of hydrogen buoyancy and its stratification tendencies when the Mach, Reynolds, and Froud number values decrease. Because the hydrogen dispersion phenomenon would impact fire and explosive hazards, the presented experimental results could help fire protection systems be in an enclosure designed, allowing their effectiveness optimization.  相似文献   

19.
In this paper the feasibility of wave energy exploitation off the Italian coasts is investigated. At this aim, the energy production and the performance characteristics of three of the most promising and documented wave energy converters (AquaBuOY, Pelamis and Wave Dragon) are estimated for two of the most energetic Italian locations. The sites are Alghero, on the western coast of Sardinia and Mazara del Vallo, on the Sicily Strait and they have respectively an average annual wave power of 10.3 kW/m and 4 kW/m, and an available annual wave energy of 90 MWh/m and 35 MWh/m.The energy production of the hypothetical wave farms is calculated based on the performance matrices of the wave energy converters (WECs) and on 21 years of wave buoy records, covering the period from 1990 to 2011. The estimated capacity factors are low (between 4% and 9%) compared to the ones obtained for the same wave energy converters in other locations and are affected by a strong seasonal variability. This indicates that the considered WECs are oversized with respect to the local wave climate and that a more efficient energy conversion would be obtained if they were downscaled according to the typical wave height and period of the study sites. As a consequence of the optimization of the device scale, at Alghero the deployment of 1:2.5 AquaBuOY, Pelamis or Wave Dragon devices would result in capacity factors around 20% and in a quite constant energy production throughout the year. In fact, the size reduction of the wave energy converters allows to capture the energy of the small waves which would otherwise be lost with the original WECs.The results of the present work suggest that deploying classic wave energy converters in Italian seas would not be cost effective but if the devices could accommodate a proper downscaling, their performance in energy conversion would become economically attractive also for some Italian locations.  相似文献   

20.
The offshore wave energy resource in the East China Sea (ECS) off the coast of the southern East China is assessed using wave buoy data covering the period of 2011−2013. It is found that the averaged offshore wave power was approximately 13 kW m−1 in the region of interest. Most of the offshore wave energy in the ECS is contributed by the sea states with significant wave heights between 1.5 m and 3.5 m and with wave energy periods between 6 s and 8 s. Seasonal variations are detected in the wave characteristics of significant wave height and wave power. The predominant wave directions are mainly from the II quadrant and the IV quadrant, respectively, in winter and summer, in accordance with the monsoon characteristics in the ECS. Wave heights, periods and power are generally higher in winter and autumn, and weaker in spring and summer; however, extreme values occur in some summer and autumn months due to the extreme conditions caused by typhoons passing over this region. These extreme sea states do not contribute much to the total annual energy, mainly because of their low occurrence, but may bring risks to the wave energy converters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号