首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ocean water covers a vast portion of the Earth's surface and is also the world's largest solar energy collector. It plays an important role in maintaining the global energy balance as well as in preventing the Earth's surface from continually heating up because of solar radiation. The ocean also plays an important role in driving the atmospheric processes. The heat exchange processes across the ocean surface are represented in an ocean thermal energy budget, which is important because the ocean stores and releases thermal energy. The solar energy absorbed by the ocean heats up the surface water, despite the loss of heat energy from the surface due to back‐radiation, evaporation, conduction, and convection, and the seasonal change in the surface water temperature is less in the tropics. The cold water from the higher latitudes is carried by ocean currents along the ocean bottom from the poles towards the equator, displacing the lower‐density water above and creating a thermal structure with a large reservoir of warm water at the ocean surface and a large reservoir of cold water at the bottom, with a temperature difference of 22°C to 25°C between them. The available thermal energy, which is the almost constant temperature water at the beginning and end of the thermocline, in some areas of the oceans, is suitable to drive ocean thermal energy conversion (OTEC) plants. These plants are basically heat engines that use the temperature difference between the surface and deep ocean water to drive turbines to generate electricity. A detailed heat energy budget of the ocean is presented in the paper taking into consideration all the major heat inputs and outputs. The basic OTEC systems are also presented and analyzed in this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.  相似文献   

3.
In the proposed study, the thermodynamic performance assessment of ocean thermal energy conversion (OTEC) based hydrogen generation and liquefaction system are evaluated. In this context, the energetic and exergetic analyses of integrated system are conducted for multigeneration. This integrated process is consisted of the heat exchangers, turbine, condenser, pumps, solar collector system, hot storage tank, cold storage tank and proton exchange membrane (PEM) electrolyzer. In addition to that, the impacts of different design indicators and reference ambient parameters on the exergetic performance and exergy destruction rate of OTEC based hydrogen production system are analyzed. The energetic and exergetic efficiencies of integrated system are founded as 43.49% and 36.49%, respectively.  相似文献   

4.
An ocean thermal energy conversion (OTEC) facility produces electrical power without generating carbon dioxide (CO2) by using the temperature differential between the reservoir of cold water at greater depths and the shallow mixed layer on the ocean surface. As some of the best sites are located far from shore, one option is to ship a high-energy carrier by tanker from these open-ocean or “grazing” OTEC platforms. We evaluate the economics and environmental attributes of producing and transporting energy using ammonia (NH3), liquid hydrogen (LH2) and methanol (CH3OH). For each carrier, we develop transportation pathways that include onboard production, transport via tanker, onshore conversion and delivery to market. We then calculate the difference between the market price and the variable cost for generating the product using the OTEC platform without and with a price on CO2 emissions. Finally, we compare the difference in prices to the capital cost of the OTEC platform and onboard synthesis equipment. For all pathways, the variable cost is lower than the market price, although this difference is insufficient to recover the entire capital costs for a first of a kind OTEC platform. With an onboard synthesis efficiency of 75%, we recover 5%, 25% and 45% of the capital and fixed costs for LH2, CH3OH and NH3, respectively. Improving the capital costs of the OTEC platform by up to 25% and adding present estimates for the damages from CO2 do not alter these conclusions. The near-term potential for the grazing OTEC platform is limited in existing markets. In the longer term, lower capital costs combined with improvements in onboard synthesis costs and efficiency as well as increases in CO2 damages may allow the products from OTEC platforms to enter into markets.  相似文献   

5.
Abrahim Lavi 《Energy》1980,5(6):469-480
The ocean thermal energy conversion (OTEC) concept is discussed with emphasis on the closed Rankine cycle using ammonia as a working fluid. The main features of OTEC, such as low efficiency high flow rates, and high capital cost are put in perspective in terms of energy cost at the bus bar. Sensitivity analyses of net output power to key design variables and to performance uncertainty are performed. It is concluded that even with a large error in estimating performance conditions, the plant produces net output power. This indicates the robust nature of current designs. Finally, cost figures of major system components are given and electricity cost based on a hypothetical capital cost is computed.  相似文献   

6.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.  相似文献   

7.
Ocean thermal energy conversion: Current overview and future outlook   总被引:1,自引:0,他引:1  
A NASA report published in 1972(1) predicted that by using OTEC to tap the thermal energy of the Gulf Stream, the electricity needs of the US could be provided for. However, despite over one hundred years of research and development activity around the world, OTEC has not yet been commercialised. The research associated with this paper was conducted out of a curiosity as to why this remains so. Either OTEC is one of a long list of technologies, full of potential in theory, but in reality impractical, or there are other reasons why OTEC has not lived up to its often stated potential. The main purpose of the paper is to come to a conclusion as to the expected future of OTEC, and offer some suggestions as to how its development could be facilitated. A conclusion of this project that the viability of OTEC could be increased by a greater attention to the needs and conditions present in the intended markets. New energy technologies inherently face barriers in their acceptance by the energy industry, so it is important to ensure a realistic and commercial strategy is adopted in their development. Another conclusion of this paper is that one of the most promising market for OTEC as an energy generation source, in the short term, appears to be the Republic of China (Taiwan). The combination of geographic suitability, recent environmental awareness, lack of natural energy resources, and economic prosperity make it an ideal candidate for OTEC development.It is hoped that this report will serve as a basis for future debate and also as a reference source with regards to OTEC and that some of the recommendations suggested will be considered when decisions regarding OTEC strategy are made.  相似文献   

8.
9.
盐差能是一种新型的可再生的海洋能,主要存在于河流入海口处。目前提取盐差能主要有3种方法:渗透压能法(PRO)——利用淡水与盐水之间的渗透压力差为动力,推动水轮机发电;反电渗析法(RED)——用阴阳离子渗透膜将浓、淡盐水隔开,利用阴阳离子的定向渗透在整个溶液中产生的电流;蒸汽压能法(VPD)——利用淡水与盐水之间蒸汽压差为动力,推动风扇发电。渗透压能法和反电渗析法有很好的发展前景,目前面临的主要问题是设备投资成本高,装置能效低。蒸汽压能法装置太过庞大、昂贵,这种方法还停留在研究阶段。  相似文献   

10.
海洋热能储量巨大,随时间变化相对稳定,具有广阔的开发利用前景。当前,海洋热能利用技术主要包括海洋温差能发电技术、海洋温差能制淡技术以及海水源热泵技术。发电技术要求海水温差不小于20℃,制淡技术要求海水温差不小于10℃,海水源热泵技术则在不同纬度地区、不同季节均能应用。本文重点分析了海洋温差能发电技术的3种循环方式,针对低温差导致低发电效率的问题,提出了利用太阳辐射加热温海水以提高温差和利用波浪能驱动泵以降低系统能耗两种提高发电效率的方法。  相似文献   

11.
OTEC converts the solar energy, collected and stored in tropical waters, into electricity. The electricity may be either cabled to shore or used in situ for the manufacture of energyintensive products. Two countries, U.S.A. and Japan, are seriously pursuing OTEC. The development programs in both countries are similar. Presently, the emphasis is on the closed Rankine cycle with ammonia as the working fluid. The power plants are to be housed on floating platforms. If the electricity is to be cabled to shore, the platforms will be moored to the ocean floor. If the plants are to produce chemical products, they will graze from one location to another on the open sea to capture the largest available thermal resource.Technical feasibility of OTEC appears certain. In the near term, OTEC can be economical for U.S. islands, which depend on imported oil for power generation. OTEC can enter the U.S. mainland market in the Southeast if projected capital cost for large plants is realized and high voltage, underwater d.c. transmission is developed beyond current state of the art. The islands market amounts to 8 GW and the U.S. market is estimated to be much larger. Penetration of the island market can begin in the early 1990s and of the mainland market after the year 2000.A potential impediment to OTEC's accelerated deployment is capital. Although there are numerous important environmental and institutional questions, they are secondary to the economic and cost issues.This paper addresses the economic, social and environmental issues pertinent to the commercialization of OTEC. The a priori assumptions are that technical problems can be solved and that in certain locations. OTEC can be competitive with conventional base-load power systems.  相似文献   

12.
Energy and freshwater shortage are the bottlenecks restricting China's economic development. The integration of energy utilization system and seawater desalination is considered as an innovative technology enabling efficient simultaneous use of middle or low temperature thermal energy and supply freshwater. Three feasible approaches to integrate seawater desalination with energy utilization system are presented in this paper, including combinations of the desalination process with a Combined Cooling Heating & Power system (CCHP), a power plant, or a solar thermal utilization system. In addition, the feasibility and advantages of a seawater desalination system combined with a power plant are described. The findings indicate that combining seawater desalination with industrial processes is a feasible and promising way to solve the problems of the lack of freshwater and low efficient use of low temperature thermal energy in coastland areas.  相似文献   

13.
海洋温差能是一种可再生的绿色能源,储藏量大,资源稳定。海洋温差发电是利用深层、表层海水的温度差,以高温海水为热源,使液态工质气化推动发电机发电,以低温海水为冷源,使气态工质液化的不断循环的过程。基于能源的可持续发展考虑,可以利用风能、太阳能等可再生能源来优化设计海洋温差发电系统。华东沿海海域有着丰富的太阳能和风能资源,利用太阳能可以提高表层海水与深层海水的温差,利用风力转化装置可以提高和调整汽轮机的转速,保证发电系统持续稳定的发电。利用太阳能、风能对海洋温差发电系统进行优化设计,不仅避免和解决了当前海洋温差发电技术上的一些难点,还扩大了应用温差能资源的海域范围。  相似文献   

14.
Present wind power is intermittent and cannot be used as the baseload energy source. Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage named Wind powered Thermal Energy System (WTES) is conducted. The thermal energy is generated from the rotating energy directly at the top of the tower by the heat generator, which is a kind of simple and light electric brake. The rest of the system is the same as the tower type concentrated solar power (CSP). The cost estimation suggests that the energy cost of WTES is less than that of the conventional wind power, which must be supported by the backup thermal plants and grid enhancement. The light heat generator reduces some issues of wind power such as noise and vibration.  相似文献   

15.
16.
To overcome the limited efficiency of ocean thermal energy conversion (OTEC), particularly in the mid-latitudes, combined OTEC (C-OTEC) could use power extracted from the latent heat of a power plant condenser. Past research in South Korea has demonstrated the feasibility of a 10 kW C-OTEC system using R134a as a working fluid. As the next phase, a 200 kW C-OTEC demonstration facility with a thermal efficiency of greater than 3% is proposed. This paper presents the engineering design process for kW-scale C-OTEC within a 100 MW-scale thermal power plant. The design process is divided into two stages. First, to predict patterns in steam flow to a connected external evaporator with a porous medium, computational fluid dynamics are calculated. The results show a conservative margin suitable for the conceptual design. Second, an iterative heat balance simulation method simultaneously evaluates the heat balance analysis of the C-OTEC design and the thermal impact of the existing power plant. The design stages are then integrated in terms of heat transference capacity.  相似文献   

17.
节能的地下含水层蓄热(冷)器   总被引:5,自引:0,他引:5  
分析了地下含水层蓄热(冷)的特点,阐述了使用含水层蓄热(冷)的系统节能和环保的重要意义,介绍了一些欧洲应用实例。  相似文献   

18.
An organic Rankine cycle (ORC) machine is similar to a conventional steam cycle energy conversion system, but uses an organic fluid such as refrigerants and hydrocarbons instead of water. In recent years, research was intensified on this device as it is being progressively adopted as premier technology to convert low-temperature heat resources into power. Available heat resources are: solar energy, geothermal energy, biomass products, surface seawater, and waste heat from various thermal processes. This paper presents existing applications and analyzes their maturity. Binary geothermal and binary biomass CHP are already mature. Provided the interest to recover waste heat rejected by thermal devices and industrial processes continue to grow, and favorable legislative conditions are adopted, waste heat recovery organic Rankine cycle systems in the near future will experience a rapid growth. Solar modular power plants are being intensely investigated at smaller scale for cogeneration applications in buildings but larger plants are also expected in tropical or Sahel regions with constant and low solar radiation intensity. OTEC power plants operating mainly on offshore installations at very low temperature have been advertised as total resource systems and interest on this technology is growing in large isolated islands.  相似文献   

19.
The present review article presents the current status of some researches on thermal energy transportation using functionally thermal fluid, which is a mixture of heat transfer medium like water and other material with or without phase change like a paraffin wax as a latent heat storage material. This functionally thermal fluid offers attractive opportunities for thermal energy transportation and heat transfer enhancement of heat exchanger. This article describes classification and characteristics of functionally thermal fluids and their application. Referring to functionally thermal fluid for the usage of sensible heat, some visco-elastic fluids for flow drag reduction in a thermal energy transport system such as aqueous polymer solution and surfactant solution are mentioned. On the other hand, this article describes heat transfer and hydrodynamic characteristics of some phase change slurries like ice slurry, phase change microemulsion slurry, phase change microencapsule slurry, clathrate slurry and shape-stabilized paraffin and polyethylene pellets as functionally thermal fluids using latent heat between solid and liquid phases. Finally, it leads to the conclusion that some functionally thermal fluids are very useful for the advanced thermal energy transportation and heat exchanger systems.  相似文献   

20.
本文结合储热材料的分类、特点、应用及存在的问题对储热材料的最新研究进展进行了综述,主要包括有机相变储热材料、熔融盐类相变储热材料、合金相变储热材料及复合类储热材料。探讨了储热材料成分组成、制备工艺及性能特点,进一步介绍了其最新研究进展,并对储热材料的下一步研究进行了展望,提出开发高性能纳微复合结构储热材料是未来研究的重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号