首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene‐wrapped poly 2,5‐dihydroxy‐1,4‐benzoquinone‐3,6‐methylene (PDBM) nanocomposites with three‐dimensional nanoflower structures have been successfully prepared through the ultrasonic exfoliation and reassembly process in methanol. Compact distribution of graphene into the nanocomposite has established a three‐dimensional conductive network, which contributes to improved properties on discharge capacity and cycle performance. Composite with 20 wt% graphene was proved the best ratio when used in sodium‐ion batteries. Its initial discharge capacity can achieve 210 at 30 mA g?1. After 100 cycles, the capacity is stable at 121 mAh g?1. The composite featuring highly conductive channels and multidimensional electron transport pathway is synthesized by an easy ultrasonic way, which may be applied in large scales for sodium‐ion batteries.  相似文献   

2.
Polyaniline (PANI), a low‐cost conducting polymer with an excellent specific capacitance and a high conductivity, is a promising organic material served for supercapacitor. However, it tends to curl and swell after constant charge and discharge, resulting in poor cycle stability. In this work, we employed the interfacial polymerization route to construct an aniline‐grafting graphene oxide/PANI (GO‐ANI/PANI) composite. The as‐prepared GO‐ANI/PANI composite shows a high specific capacitance (160.5 F g‐1) at 0.5 A g‐1 under the wide potential range from 0.0 to 1.0 V. Importantly, at a high current density (10 A g‐1), the capacitance retains 86% after 3000 cycles due to the enhanced interaction between GO and PANI and good conductive network. It has been demonstrated that the GO‐ANI/PANI composite has a higher specific capacitance and better stability compared with GO/PANI obtained by common method. This study implies that the composite electrode could be a competitive candidate for high‐performance supercapacitor.  相似文献   

3.
Novel magnetic tubular carbon nanofibers (MTCFs) are prepared through the combination technique of hypercrosslinking, control extraction, and carbonization. The diameter of MTCFs is mainly concentrated between 90 and 120 nm, and the average tube diameter is about 30 nm. A trace amount of Fe3O4 exists inside the MTCFs with a particle size of 3 nm, which is formed by in situ conversion of the catalyst (FeCl3) for the hypercrosslinking reaction. The MTCFs with high surface area (448.74 m2 g?1) and porous wall are used as anode material for lithium‐ion batteries. The electrochemical properties of MTCFs are compared, and tubular carbon nanofibers (TCFs) prepared by the complete extraction. Electrochemical analysis shows that the introduction of Fe3O4 nanoparticles makes MTCFs have higher reversible capacity and better rate performance. MTCFs exhibit high reversible specific capacity of 1011.7 mAh g?1 after 150 cycles at current density of 100 mA g?1. Even at high current density of 3000 mA g?1, a remarkable reversible capacity of 270.0 mAh g?1 is still delivered. Thus, the novel MTCFs show potential application value in anode material for high‐performance lithium‐ion battery.  相似文献   

4.
Ceramic-coated separators are prepared by coating the sides of a porous polyethylene membrane with nano-sized Al2O3 powder and hydrophilic poly(lithium 4-styrenesulfonate) binder. These separators exhibit an improved thermal stability at high temperatures without significant thermal shrinkage. Due to the high hydrophilicity of the polymer binder and large surface area of the small ceramic particles, the separators show good wettability in non-aqueous liquid electrolytes. By using the ceramic-coated separators, lithium-ion cells composed of a carbon anode and a LiCoO2 cathode are assembled and their cycling performance is evaluated. The cells are proven to have better capacity retention than for cells prepared with polyethylene membrane. It is expected that the ceramic-coated separator in this study can be potential candidate as a separator for rechargeable lithium-ion batteries that require thermal safety and good capacity retention.  相似文献   

5.
Lithium iron phosphate‐carbon (LiFePO4/multiwalled carbon nanotubes (MWCNTs)) composite cathode materials were prepared by a hydrothermal method. In this study, we used MWCNTs as conductive additive. Poly (vinylidene fluoride‐co‐hexafluoropropylene)‐based solid polymer electrolyte (SPE) was applied. The structural and morphological performance of LiFePO4/MWCNTs cathode materials was investigated by X‐ray diffraction and scanning electron microscopy/mapping. The electrochemical properties of Li/SPE/LiFePO4‐MWCNTs coin‐type polymer batteries were analyzed by cyclic voltammetry, ac impedance and galvanostatic charge/discharge tests. Li/SPE/LiFePO4‐MWCNTs polymer battery with 5 wt % MWCNTs demonstrates the highest discharge capacity and stable cyclability at room temperature. It is indicated that LiFePO4‐MWCNTs can be used as the cathode materials for lithium polymer batteries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Solid‐state batteries (SSBs) with room temperature (RT) performances had been one of the most promising technologies for energy storage. To achieve a chemical stable and high ionic conductive solid electrolyte, herein, a titania (TiO2) (B) nanorods‐filled poly(propylene carbonate) (PPC)‐based organic/inorganic composite solid electrolyte (CSE) was prepared for the first time. It was found that by using TiO2(B) nanorods, the ionic conductivity of the CSE membrane could be improved to 1.52 × 10?4 S/cm, the electrochemical stable window was more than 4.6 V, and the tensile strength reaches 27 MPa with a strain less than 6%. The CSE was applied for SSB and showed excellent room temperature electrochemical performances. At 25°C, the LiFePO4/CSE/Li SSB with 3%TiO2‐filled CSE had the first cycle specific discharge capacity of 162 mAh/g with a capacity retention of 93% after 100 cycles at 0.3C. While the NCM622/CSE/Li SSB with 3%TiO2‐filled CSE had the first specific discharge capacity of 165 mAh/g with a capacity retention of 88% after 100 cycles at 0.3C. The enhancement effect of TiO2(B) nanorods could be ascribed that the rod‐like fillers provide more continuous Li‐ion transport path compared with nano particles, and the surface porosity and composition of TiO2(B) nanorods could also improve the interfacial contact and Lewis acid‐base reaction sites between polymer and fillers. The TiO2(B) nanorods‐filled CSE with high chemical stability, potential window, and ionic conductivity was promising to meet the requirements of SSBs.  相似文献   

7.
A cross-linked chitosan (CCS) membrane has been prepared by a solution casting method using sulfuric acid as cross-linking agent. The CCS membrane was used as the polymer electrolyte and separator in a direct borohydride fuel cell (DBFC). Ionic conductivity and borohydride crossover rate have been measured for the CCS membrane. The DBFC used in this study employed nickel-based composite as anode catalyst and Nafion® as anode binder. The power performance of the CCS membrane-based DBFC was compared with a similar DBFC employing Nafion® 212 (N212) membrane as electrolyte /separator. The CCS membrane-based DBFC exhibited better power performance as compared to N212 membrane-based DBFC. Encouraged by this result, chitosan chemical hydrogel (CCH) was prepared and used as binder for anode catalysts. A DBFC comprising CCS membrane and CCH as anode binder was studied and found to exhibit even better power performance at all temperatures in this study. A maximum peak power density of 450 mW cm−2 was observed at 60 ?C for DBFC employing CCS membrane and CCH binder-based anode. The chitosan-based DBFC was operated continuously for 100 h and its performance stability was recorded.  相似文献   

8.
Solid polymer composite electrolyte (SPCE) with good safety, easy processability, and high ionic conductivity was a promising solution to achieve the development of advanced solid‐state lithium battery. Herein, through electrospinning and subsequent calcination, the Li0.33La0.557TiO3 nanowires (LLTO‐NWs) with high ionic conductivity were synthesized. They were utilized to prepare polymer composite electrolytes which were composed of poly (ethylene oxide) (PEO), poly (propylene carbonate) (PPC), lithium bis (fluorosulfonyl)imide (LiTFSI), and LLTO‐NWs. Their structures, thermal properties, ionic conductivities, ion transference number, electrochemical stability window, as well as their compatibility with lithium metal, were studied. The results displayed that the maximum ionic conductivities of SPCE containing 8 wt.% LLTO‐NWs were 5.66 × 10?5 S cm?1 and 4.72 × 10?4 S cm?1 at room temperature and 60°C, respectively. The solid‐state LiFePO4/Li cells assembled with this novel SPCE exhibited an initial reversible discharge capacity of 135 mAh g?1 and good cycling stability at a charge/discharge current density of 0.5 C at 60°C.  相似文献   

9.
A study of a phosphoric acid (PA)‐doped polybenzimidazole (PBI) membrane fuel cell is reported. The fuel cell used polytetrafluoroethylene (PTFE) in the catalyst layer of the membrane electrode assembly to act as a binder and did not use PBI. The PTFE provided an amorphous phase to hold the PA added to the catalyst layers. The study investigated several parameters of the fuel cell electrode, catalyst layer including: PA loading, PTFE content and catalyst loading and wt% of Pt in the carbon supported catalysts and doping of the PBI membrane. There was a minimum amount of acid doping that gave good cell performance for oxygen reduction in the cathode layer. Good performance of the fuel cell was achieved at 120°C with air of 0.27 W cm?2 using a 0.51 mgPt cm?2 loading of catalyst. Peak power of 0.4 W cm?2 was achieved with air at 150°C using a membrane doping of PA of 5.6 PRU (doped acid molecules per repeat polymer unit). Heat treatment of the PTFE‐bonded electrodes to increase hydrophobicity did not improve the cell performance. The effect of a perfluorinated surfactant although reported to enhance oxygen solubility in the catalyst layer led to a poorer cell performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Compared with symmetric supercapacitors, asymmetric supercapacitors are been widely applied in energy storage devices because of delivering an impressible energy density. Herein, a simple temple strategy was used to fabricate the porous hollow carbon spheres (PHCS) with high specific surface area of 793 m2 g?1, large pore volume of 1.0 cm3 g?1 and pore size distribution from micropores to mesopores, serving as the capacitive electrodes of asymmetric supercapacitors. Subsequently, manganese dioxide (MnO2) was impregnated into the PHCS to form a faradic electrode with a promising performance, owing to a synergistic effect between high capacity MnO2 and conductive PHCS. Furthermore, the flexible asymmetric solid‐state devices were constructed with PHCS anode, PHCS@MnO2 cathode, and PVA/LiCl electrolyte, extending a voltage window up to 1.8 V. The extensive voltage window would lead to an increased energy density. In our case, the flexible asymmetric sandwich exhibit excellent electrochemical performance in terms of a high energy density capacity of 26.5 W·h kg?1 (900 W kg?1) and superior cycling performance (10 000 cycles). Therefore, the developed strategy provides a strategy to achieve the PHCS‐based composites for the application in the asymmetric solid‐state supercapacitors, which will enable a widely field of flexible energy storage devices.  相似文献   

11.
A high-temperature conductive binder for preparing an integrated electrode bipolar plate (IEBP) was proposed. The electrical resistance and stability of IEBP samples with different component proportions were tested after treated at different temperatures. The results showed that the mass ratio of phenolic resin, graphite powder, B4C, and SiO2 in the conductive binder was 1:0.5:0.5:0.1, and the IEBP prepared by it had the lowest electrical resistance and the highest stability in vanadium solution after treated at 800°C. The characterization results of thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), Fourier transformed infrared radiation (FTIR), and scanning electron microscope (SEM) indicated that the bonding strength was closely related to the formation of borosilicate glass and the volume compensation from B4C's oxidation. The battery with IEBP had better performance than those with no binder, and it operated well at a current density up to 150 mA cm−2. Furthermore, the battery with IEBP had a stable cycling performance and the IEBP remained integrated after up to 100 charge-discharge cycles.  相似文献   

12.
A novel form‐stable composite as phase change material (PCM) for thermal energy storage was prepared by absorbing stearic acid (SA) into halloysite nanotube (HNT). The composite PCM was characterized by TEM, FT‐IR and DSC analysis techniques. The composite can contain SA as high as 60 wt% and maintain its original shape perfectly without any SA leakage after subjected to 50 melt–freeze cycles. The melting temperature and latent heat of composite (SA/HNT: 60/40 wt%) were determined as 53.46°C and 93.97 J g?1 by DSC. Graphite was added into the SA/HNT composite to improve thermal storage performance, and the melting time and freezing time of the composite were reduced by 65.3 and 63.9%, respectively. Because of its high adsorption capacity of SA, high heat storage capacity, good thermal stability, low cost and simple preparation method, the composite can be considered as cost‐effective latent heat storage material for practical application. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Three‐dimensional (3D) nitrogen‐doped carbon nanofibers (N‐CNFs) which were originating from nitrogen‐containing zeolitic imidazolate framework‐8 (ZIF‐8) were obtained by a combined electrospinning/carbonization technique. The pores uniformly distributed in N‐CNFs result in the improvement of electrical conductivity, increasing of BET surface area (142.82 m2 g?1), and high porosity. The as‐synthesized 3D free‐standing N‐CNFs membrane was applied as the current collector and binder free containing Li2S6 catholyte for lithium‐sulfur batteries. As a novel composite cathode, the free‐standing N‐CNFs/Li2S6 membrane shows more stable electrochemical behavior than the CNFs/Li2S6 membrane, exhibiting a high first‐cycle discharge specific capacity of 1175 mAh g?1at 0.1 C and keeping discharge specific capacity of 702 mAh g?1 at higher rate. More importantly, as the sulfur mass in cathodes was increased at 7.11 mg, the N‐CNFs/Li2S6 membrane delivered 467 mAh g?1after 150 cycles at 0.2 C. The excellent electrochemical properties of N‐CNFs/Li2S6 membrane can be ascribed to synergistic effects of high porosity and nitrogen‐doping in N‐CNFs from carbonized ZIF‐8, illustrating collective effects of physisorption and chemisorption for lithium polysulfides in discharge‐charge processes.  相似文献   

14.
Carbon nanofibers were prepared through electrospinning a blend solution of polyacrylonitrile and polypyrrole, followed by carbonization at 700 °C. Structural features of electrospun polyacrylonitrile/polypyrrole bicomponent nanofibers and their corresponding carbon nanofibers were characterized using scanning electron microscopy, differential scanning calorimeter, thermo-gravimetric analysis, wide-angle X-ray diffraction, and Raman spectroscopy. It was found that intermolecular interactions are formed between two different polymers, which influence the thermal properties of electrospun bicomponent nanofibers. In addition, with the increase of polypyrrole concentration, the resultant carbon nanofibers exhibit increasing disordered structure. These carbon nanofibers were used as anodes for rechargeable lithium-ion batteries without adding any polymer binder or conductive material and they display high reversible capacity, improved cycle performance, relatively good rate capability, and clear fibrous morphology even after 50 charge/discharge cycles. The improved electrochemical performance of these carbon nanofibers can be attributed to their unusual surface properties and unique structural features, which amplify both surface area and extensive intermingling between electrode and electrolyte phases over small length scales, thereby leading to fast kinetics and short pathways for both Li ions and electrons.  相似文献   

15.
NiO/poly(3,4-ethylenedioxythiophene) (PEDOT) films are prepared by chemical bath deposition and electrodeposition techniques using nickel foam as the substrate. These composite films are porous, and constructed by many interconnected nanoflakes. As anode materials for lithium ion batteries, the NiO/PEDOT films exhibit weaker polarization and better cycling performance as compared to the bare NiO film. Among these composite films, the NiO/PEDOT film deposited after 2 CV cycles has the best cycling performance, and its specific capacity after 50 cycles at the current density of 2 C is 520 mAh g−1. The improvements of these electrochemical properties are attributed to the PEDOT, a highly conductive polymer, which covers on the surfaces of the NiO nanoflakes, forming a conductive network and thus enhances the electrical conduction of the electrode.  相似文献   

16.
Cellulose is the main building block of plant's cell wall that provides structural stability. This idea inspired us to use modified cellulose (Networked cellulose) to provide thermal and mechanical stability to a polymer electrolyte system. The system composed of polyethylene glycol (PEG) (or tetraethylene glycol dimethyl ether (TEGDME)), polyethylene oxide (PEO), networked cellulose (NC) and LiClO4 as a salt. The PEG (or TEGDME) was used as a high mobility phase for lithium ions, PEO acted as a binder and NC provided structural support for the quasi-solid polymer electrolytes. A high conductivity of the order of 10−4 S cm−1 was obtained at room temperature. Dynamic mechanical analysis of PEG (or TEGDME):PEO:NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Differential scanning calorimetry (DSC)/Thermal gravimetry analysis (TGA) revealed that the developed ternary polymer electrolyte is thermally stable in the lithium-ion battery operational temperature range.  相似文献   

17.
Multi‐walled carbon nanotube (MWCNT) protection layers have previously been used to trap polysulfides and suppress the shuttle effect in lithium sulfur (Li‐S) batteries, leading to significant performance improvement. While the MWCNT is inherently highly conductive and mechanically strong, the cost can be significant and in turn hampered wider application of MWCNT protection layers. Here, we employed lignin, a byproduct during high‐quality bleached paper manufacturing, to replace a portion of MWCNT in the protection layer to reduce cost and enhance surface properties of pristine MWCNT protection layers. We found that the protection layer with 25 wt% lignin leads to the best overall electrochemical performance of Li‐S batteries during charging/discharging at 0.5°C and 1C rate (1C = 1,675 mA g?1) among various weight‐ratios of lignin/MWCNT, and a low decay rate (0.20% per cycle) and high initial capacity (1342 mA g?1 and 1437 mA g?1 for 1C and 0.5C, respectively) are demonstrated. Besides, Li‐S cells with 25 wt% lignin/MWCNT composite protection layer also exhibited great rate capability, of which the specific capacities at 0.1C, 0.5C, 1C, and 2C were 1150, 913, 824, and 637 mAh g?1, respectively. The enhanced electrochemical stability and performance of Li‐S batteries can be attributed to strengthened polysulfide trapping and improved lithium ion transport with lignin reinforced MWCNT protection layers. We showcased an economic approach to extend cycle life and improve rate capability of Li‐S batteries.  相似文献   

18.
Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.  相似文献   

19.
A series of different α‐Fe2O3 nanoparticles composites containing different amounts of graphene coatings have been successfully prepared using a simple electrostatic self‐assembly (ESA) method. The structure and electrochemical properties of these α‐Fe2O3@graphene composites have been investigated. The α‐Fe2O3 nanoparticles composite containing 40 wt% graphene coating exhibits the highest specific capacity (385 mAh g?1) under 1000 mA g?1, resulting in superior cycle stability with no downward trend after 500 cycles. These results demonstrate that graphene coatings can be used to enhance the electrochemical properties and morphological stability of α‐Fe2O3 nanoparticles as anodic materials for high performance lithium‐ion batteries (LIBs). The low‐energy self‐assembly method employed in the paper has good potential for the broad‐scale preparation of other graphene‐modified materials because of its simplicity and the relatively low temperature conditions.  相似文献   

20.
Traditional three‐dimensional (3D) graphene has a large pore structure, which makes the graphene structure not well interact with the anion and cation during the desalination process, thereby restricting the capacitive deionization (CDI) ability of the 3D graphene. In this work, we prepared a nitrogen‐doped self‐shrinking porous 3D graphene electrode by adding a pyrrole monomer to a graphene oxide solution, which was then applied to a CDI electrode. The results show that the electrochemical performance of the as‐prepared nitrogen‐doped self‐shrinking porous 3D graphene (NSPG) is significantly improved. Compared with traditional 3D graphene, NSPG has a denser pore structure with a larger specific surface area, thus exhibiting a good CDI performance: The NSPG electrode has an electroadsorption capacity of 13.16 mg/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号