首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemokines contribute to the inflammatory response by selective attraction of various leukocytic cell types. Human GCP-2 was originally identified by amino acid sequence analysis as a CXC chemokine co-produced with IL-8 by osteosarcoma cells. Furthermore, the complete coding domain of human GCP-2 was disclosed by means of RT-PCR. Similarly, mouse GCP-2 was isolated from fibroblastoid and epithelial cells and completely identified by sequence analysis. Human and mouse GCP-2 share 61% identical amino acids. Both chemokines occur as multiple NH2-terminally truncated forms. The shorter forms of mouse, but not those of human, GCP-2 showed a higher neutrophil chemotactic potency and gelatinase B releasing capacity. Mouse GCP-2 was a more potent neutrophil activator than human GCP-2, natural mouse KC, and MIP-2. Human GCP-2 was not chemotactic for monocytes, lymphocytes, or eosinophils. Quantitative studies of mRNA expression in diploid fibroblasts revealed GCP-2 induction by IL-1beta. Human GCP-2 induced [Ca2+]i increase in neutrophils, which was reciprocally desensitized by IL-8, GROalpha, and ENA-78. Human GCP-2 induced [Ca2+]i increases and chemotactic responses in both CXCR1- and CXCR2-transfected cells. Finally, GCP-2 provoked neutrophil accumulation and plasma extravasation in rabbit skin. In humans, GCP-2 complements the activity of IL-8 as neutrophil chemoattractant and activator but it constitutes a major neutrophil chemokine in the mouse. GCP-2 induces neutrophil chemotaxis and activation but it might also contribute to detrimental tissue damage in sepsis, acute respiratory distress syndrome, acute hypersensitivity reactions, and autoimmune diseases. It might also influence the invasive capacity of GCP-2-secreting tumor cells.  相似文献   

2.
Neutrophils (polymorphonuclear neutrophils; PMN) and a redundant system of chemotactic cytokines (chemokines) have been implicated in the pathogenesis of the acute respiratory distress syndrome in patients with sepsis. PMN express two cell surface receptors for the CXC chemokines, CXCR1 and CXCR2. We investigated the expression and function of these receptors in patients with severe sepsis. Compared with normal donors, CXCR2 surface expression was down-regulated by 50% on PMN from septic patients (p < 0.005), while CXCR1 expression persisted. In vitro migratory responses to the CXCR1 ligand, IL-8, were similar in PMN from septic patients and normal donors. By contrast, the migratory response to the CXCR2 ligands, epithelial cell-derived neutrophil activator (ENA-78) and the growth-related oncogene proteins, was markedly suppressed in PMN from septic patients (p < 0.05). Ab specific for CXCR1 blocked in vitro migration of PMN from septic patients to IL-8 (p < 0.05), but not to FMLP. Thus, functionally significant down-regulation of CXCR2 occurs on PMN in septic patients. We conclude that in a complex milieu of multiple CXC chemokines, CXCR1 functions as the single dominant CXC chemokine receptor in patients with sepsis. These observations offer a potential strategy for attenuating adverse inflammation in sepsis while preserving host defenses mediated by bacteria-derived peptides such as FMLP.  相似文献   

3.
Certain C-C chemokines, signaling via the eotaxin receptor C-C chemokine receptor-3 (CCR3), are thought to be central mediators of eosinophil accumulation in allergic inflammation. To investigate the role of CCR3 in vivo, we cloned the guinea pig eotaxin receptor (guinea pig CCR3) from a genomic DNA library. We isolated a single-exon open reading frame coding for a 358-amino acid chemokine receptor protein with 67 and 69% homology to human and murine CCR3, respectively. When expressed in stable transfectants, this receptor bound 125I-labeled guinea pig eotaxin, 125I-labeled human monocyte chemotactic protein-3, and 125I-labeled human RANTES. In chemotaxis assays, guinea pig CCR3 transfectants responded only to guinea pig eotaxin, with a maximal effect at 100 nM. mAbs were raised that bound selectively to both guinea pig CCR3 transfectants and guinea pig eosinophils. One of these mAbs, 2A8, blocked both ligand binding to transfectants and their chemotaxis in response to eotaxin. The Ab also inhibited chemotaxis and the elevation of cytosolic calcium in guinea pig eosinophils in response to eotaxin. F(ab')2 fragments of 2A8 were prepared that retained the ability to inhibit eosinophil calcium responses to eotaxin. Pretreatment of (111)In-labeled eosinophils in vitro with F(ab')2 2A8 selectively inhibited their accumulation in response to eotaxin in vivo. These data demonstrate that functional blockade of eosinophil chemokine receptors can be achieved in vivo and provide further support for the development of novel anti-inflammatory drugs targeting eosinophil recruitment through chemokine receptor antagonism.  相似文献   

4.
CC chemokine receptors 1 and 3 (CCR1 and CCR3) are expressed by eosinophils; however, factors regulating their expression and function have not previously been defined. Here we analyze chemokine receptor expression and function during eosinophil differentiation, using the eosinophilic cell line HL-60 clone 15 as a model system. RNA for CCR1, -3, -4, and -5 was not detectable in the parental cells, and the cells did not specifically bind CC chemokines. Cells treated with butyric acid acquired eosinophil characteristics; expressed mRNA for CCR1 and CCR3, but not for CCR4 or CCR5; acquired specific binding sites for macrophage-inflammatory protein-1alpha and eotaxin (the selective ligands for CCR1 and CCR3, respectively); and exhibited specific calcium flux and chemotaxis responses to macrophage-inflammatory protein-1alpha, eotaxin, and other known CCR1 and CCR3 agonists. CCR3 was expressed later and at lower levels than CCR1 and could be further induced by IL-5, whereas IL-5 had little or no effect on CCR1 expression. Consistent with the HIV-1 coreceptor activity of CCR3, HL-60 clone 15 cells induced with butyric acid and IL-5 fused with HeLa cells expressing CCR3-tropic HIV-1 envelope glycoproteins, and fusion was blocked specifically by eotaxin or an anti-CCR3 mAb. These data suggest that CCR1 and CCR3 are markers of late eosinophil differentiation that are differentially regulated by IL-5 in this model.  相似文献   

5.
A selective recruitment of eosinophils to sites of inflammation is claimed to be controlled by regulation of cytokines, chemokines and adhesion molecules. In animal models, eotaxin has been suggested to be a potent chemokine since it in cooperation with interleukin-5 induce selective chemotaxis and infiltration of eosinophils to lung tissue after an allergen provocation. We have investigated the in vitro effect of eotaxin on human peripheral blood eosinophils with respect to CD11b/CD18 expression and adhesion properties to the matrix protein fibronectin. We did not find any effect of eotaxin per se on CD11b/CD18 expression, neither on eosinophils from healthy subjects nor from patients with asymptomatic pollen related asthma. However, eotaxin significantly upregulated the quantitative level of CD11b/CD18 and increased the adhesion to fibronectin in eosinophils from healthy subjects preincubated in vitro with interleukin-5, but not in eosinophils preincubated with fMLP. Moreover, eosinophils harvested 24 hours after an in vivo allergen inhalation provocation in asthmatics, upregulated CD11b/CD18 after in vitro incubation with eotaxin alone.  相似文献   

6.
7.
8.
Human neutrophils (polymorphonuclear leukocytes; PMN) respond to some CXC chemokines but do not migrate to CC chemokines. Recent work has shown that chemokine receptors can be modulated by inflammatory cytokines. In this study, the effect of IFN-gamma, a prototypic Th1 cytokine, on chemokine receptor expression in PMN was investigated. IFN-gamma caused a rapid (approximately 1 h) and concentration-dependent increase of CCR1 and CCR3 mRNA. The expression of CCR2, CCR5, and CXCR1-4 was not augmented. IFN-gamma-treated PMN, but not control cells, expressed specific binding sites for labeled monocyte-chemotactic protein (MCP)-3 and migrated to macrophage-inflammatory protein (MIP)-1alpha, RANTES, MCP-3, MIP-5/HCC2, and eotaxin. 7B11, a mAb for CCR3, inhibited the chemotactic response of IFN-gamma-treated PMN to eotaxin, and aminoxypentane-RANTES blocked PMN migration to RANTES. These results suggest that the selectivity of certain chemokines for their target cells may be altered by cytokines produced within an inflammatory context. Since PMN may play a role in orienting immunity toward Th1 responses, it is possible to speculate that IFN-gamma not only promotes Th1 differentiation directly, but also reorients the functional significance of Th2 effector cytokines by broadening the spectrum of their action to include PMN.  相似文献   

9.
Eosinophils play an important role in allergic and autoimmune diseases. They are activated by distinct chemokines, leading to the immigration into the inflamed tissue, and mediate tissue damage by releasing reactive oxygen species. Recently, eotaxin was found to have the broadest spectrum of activities of all eosinophil-activating CC chemokines. In this study we investigated the effect of the novel CC chemokine, eotaxin-2, on eosinophil effector functions and compared its activity with eotaxin. Using nitrobenzoxadiazole-phallacidin staining and flow cytometry, we show that eotaxin-2 induced rapid and transient actin polymerization, a prerequisite for cell migration and modulation of the respiratory burst, in eosinophils in the same range of efficacy as observed for eotaxin. Eotaxin-2 induced the release of reactive oxygen species in a dose-dependent manner; half maximal and maximal release were found at 50 ng/ml and 500 ng/ml, respectively. Surprisingly, the efficacy of eotaxin-2 was comparable to that of eotaxin and C5a. Release of reactive oxygen species was inhibited by pertussis toxin, indicating the involvement of Gi proteins in the signaling of eotaxin-2. Moreover, the anti-CC chemokine receptor 3 (CCR3) monoclonal antibody, 7B11, was able to inhibit transient rise in the cytosolic Ca2+ concentration and the release of reactive oxygen species following stimulation with eotaxin-2. Therefore, eotaxin-2 represents a potent CC chemokine for human eosinophils activating chemotaxis-related events, such as actin polymerization, and the respiratory burst via the CCR3. Moreover, the efficacy of eotaxin-2 seems to be in the same range as that of eotaxin which might re-evaluate the recent profile of activity of CC chemokines in the activation of human eosinophils.  相似文献   

10.
Although most leukocytes, T lymphocytes in particular, respond to several different chemokines, there is virtually no information on chemokine activities and chemokine receptors in B lymphocytes. A putative chemokine receptor, BLR1, that is expressed in Burkitt's lymphoma cells and B lymphocytes was cloned a few years ago. Deletion of the gene for BLR1 yielded mice with abnormal primary follicles and germinal centers of the spleen and Peyer's patches, reflecting the inability of B lymphocytes to migrate into B cell areas. By screening expressed sequence tag DNA sequences, we have identified a CXC chemokine, termed B cell-attracting chemokine 1 (BCA-1), that is chemotactic for human B lymphocytes. BCA-1 cDNA encodes a protein of 109 amino acids with a leader sequence of 22 residues. The mature protein shares 23-34% identical amino acids with known CXC chemokines and is constitutively expressed in secondary lymphoid organs. BCA-1 was chemically synthesized and tested for activity on murine pre-B cells 300-19 transfected with BLR1 and on human blood B lymphocytes. In transfected cells, BCA-1 induced chemotaxis and Ca2+ mobilization demonstrating that it acts via BLR1. Under the same conditions, no activity was obtained with 10 CXC and 19 CC chemokines, lymphotactin, neurotactin/fractalkine and several other peptide ligands. BCA-1 was also a highly effective attractant for human blood B lymphocytes (which express BLR1), but was inactive on freshly isolated or IL-2-stimulated T lymphocytes, monocytes, and neutrophils. In agreement with the nomenclature rules for chemokine receptors, we propose the term CXCR5 for BLR1. Together with the observed disturbance of B cell colonization in BLR1/ CXCR5-deficient mice, the present results indicate that chemotactic recruitment by locally produced BCA-1 is important for the development of B cell areas of secondary lymphoid tissues.  相似文献   

11.
TNF-alpha is implicated in the initiation of cytokine cascades in various inflammatory settings. To assess the interactions of multiple cytokines at the level of inflammatory effector cells, we examined the effects of TNF-alpha on the expression of two IL-8Rs (CXCR1 and CXCR2) on polymorphonuclear leukocytes (PMNs). TNF-alpha decreased the surface expression of CXCR2 in a dose- and time-dependent manner. In contrast, CXCR1 expression was not affected by TNF-alpha. The release of CXCR2 into the supernatant of TNF-alpha-treated PMNs was detected by immunoblotting and immuno-slot-blot analyses, suggesting that the down-regulation of CXCR2 was caused mainly by shedding from the cell surface. The CXCR2 down-regulation was inhibited by PMSF and aprotinin, supporting the hypothesis that the shedding was mediated by serine protease(s). The intracellular Ca2+ mobilization and chemotaxis in response to IL-8 were suppressed by the pretreatment of PMNs with TNF-alpha, indicating that the decrease in CXCR2 was reflected in the decreased functional responses to IL-8. In contrast, the O2- release, which is mediated by CXCR1, was not suppressed by TNF-alpha. The treatment of whole blood with TNF-alpha also caused a significant reduction in CXCR2 and markedly suppressed intracellular Ca2+ mobilization and chemotaxis in response to IL-8, while enhancing the O2- release. These findings suggest that TNF-alpha down-regulates CXCR2 expression on PMNs and modulates IL-8-induced biologic responses, leading to the intravascular retention of PMNs with an enhanced production of reactive oxygen metabolites.  相似文献   

12.
To further elucidate mechanisms involved in mast cell accumulation at sites of cutaneous inflammation, we have studied the ability of human leukemic mast cells (HMC-1 cells) to express functionally active IL-8 receptors. Expression of mRNA for both types of IL-8 receptors (CXCR1 and CXCR2) was demonstrated by PCR and of both proteins by flow cytometry. Binding and competition studies with 125I-labeled IL-8 and its homologue melanoma growth stimulating activity (125I-labeled MGSA) revealed two specific binding sites for IL-8, K1 = 1.1 x 10(11) M(-1) and K2 = 5 x 10(7) M(-1); and for MGSA, K1 = 2.8 x 10(10) M(-1) and K2 = 5 x 10(7) M(-1). This finding was supported by a dose-dependent rise of cytosolic free calcium concentration ([Ca2+]i) induced by both chemokines and to a lesser extent by the homologue neutrophil-activating peptide-2 (NAP-2). A significant migratory response of human leukemic mast cells (HMC-1) was observed with all three chemokines at a range from 10(-8) M to 10(-9) M. Moreover, the formation of cellular F-actin was induced in a rapid, dose-dependent fashion, with a maximally 1.7-fold increase at 10(-7) M. Using postembedding immunoelectron microscopy, we could show the expression of CXCRI on the cytoplasmatic membrane of isolated human skin mast cells whereas CXCR2 was located in mast cell-specific granules. These findings demonstrate for the first time the functional expression of both types of IL-8 receptors on human mast cells, suggesting a role for their ligands during mast cell activation and recruitment.  相似文献   

13.
Eosinophil leukocytes express high numbers of the chemokine receptor CCR3 which binds eotaxin, monocyte chemotactic protein (MCP)-4, and some other CC chemokines. In this paper we show that CCR3 is also highly expressed on human blood basophils, as indicated by Northern blotting and flow cytometry, and mediates mainly chemotaxis. Eotaxin and MCP-4 elicited basophil migration in vitro with similar efficacy as regulated upon activation normal T cells expressed and secreted (RANTES) and MCP-3. They also induced the release of histamine and leukotrienes in IL-3-primed basophils, but their efficacy was lower than that of MCP-1 and MCP-3, which were the most potent stimuli of exocytosis. Pretreatment of the basophils with a CCR3-blocking antibody abrogated the migration induced by eotaxin, RANTES, and by low to optimal concentrations of MCP-4, but decreased only minimally the response to MCP-3. The CCR3-blocking antibody also affected exocytosis: it abrogated histamine and leukotriene release induced by eotaxin, and partially inhibited the response to RANTES and MCP-4. In contrast, the antibody did not affect the responses induced by MCP-1, MCP-3, and macrophage inflammatory protein-1alpha, which may depend on CCR1 and CCR2, two additional receptors detected by Northern blotting with basophil RNA. This study demonstrates that CCR3 is the major receptor for eotaxin, RANTES, and MCP-4 in human basophils, and suggests that basophils and eosinophils, which are the characteristic effector cells of allergic inflammation, depend largely on CCR3 for migration towards different chemokines into inflamed tissues.  相似文献   

14.
Chemokines are a family of chemotactic cytokines which attract different types of leukocytes. This property, combined with some additional inflammatory and growth-regulatory activities, demonstrate their crucial role in the immune system. Chemokines are low molecular weight proteins and possess a typical positioning of four conserved cysteines. This family is further subdivided in two subfamilies depending on whether the first two cysteines are adjacent or not (CC and CXC chemokines, respectively). The CXC chemokines (including interleukin-8) predominantly attract neutrophils, whereas CC chemokines induce migration of monocytes, as well as other leukocyte cell types. In this article, the general characteristics of chemokines are reviewed. Furthermore, the murine CC chemokines, JE/MCP-1, MCP-3/MARC, MIP-1 alpha, MIP-1 beta, RANTES, TCA3, C10/MRP-1, MRP-2, and eotaxin, are discussed more in detail.  相似文献   

15.
At inflammatory sites in vivo, leukocytes may confront multiple, competing chemoattractive signals. We found significant differences between eosinophils and neutrophils in transendothelial chemotaxis to a chemoattractant diffusing from the lower chamber, when a chemoattractant that binds to another receptor is present at uniform concentration. The transendothelial migration of eosinophils to FMLP, C5a, RANTES, or MCP-3 was totally inhibited by the presence of the homologous chemoattractant, and only RANTES and MCP-3 showed mutual inhibition. C5a and to a lesser extent FMLP chemokinetically stimulated migration to RANTES and MCP-3, without stimulating random migration. Results with neutrophils contrasted. The presence of FMLP not only abrogated neutrophil transmigration to FMLP but also strongly decreased chemotaxis to C5a, IL-8, and Gro-alpha. Similarly, C5a inhibited neutrophil chemotaxis to IL-8 and Gro-alpha. IL-8 almost totally abrogated chemotaxis to Gro-alpha, but Gro-alpha only moderately inhibited chemotaxis to IL-8. Neither IL-8 nor Gro-alpha significantly inhibited transmigration to FMLP or C5a. Actin polymerization in eosinophils and neutrophils was desensitized by the same combinations of chemoattractants that desensitized chemotaxis. We conclude that eosinophils have at least three noninterfering receptor-signal transduction pathways for chemotaxis and actin polymerization. In contrast, the signaling pathways for FMLP, C5a, and IL-8/Gro-alpha in neutrophils are heterologously cross-desensitized, with a hierarchy of resistance to competing signals of FMLP > C5a > IL-8 > Gro-alpha, in agreement with previous results in neutrophils on the Ca2+-mobilizing response. These results may have important implications for the behavior of these cell types in inflammatory sites.  相似文献   

16.
Epidermal infiltration by neoplastic CD4+ T cells is a characteristic histologic feature of early stage mycosis fungoides, the most common type of cutaneous T cell lymphoma (CTCL). The mechanisms involved in epidermotropism are unknown. It has been suggested that the CXC chemokines IL-8 and interferon-gamma inducible protein 10 (IP-10) may play a role, but evidence that these chemokines are produced within the epidermis in epidermotropic CTCL is lacking. In this study skin biopsies from 17 CTCL patients, including 12 mycosis fungoides, four pleomorphic CTCL, and one CD8+ CTCL, were investigated for epidermal IL-8 and IP-10 mRNA expression by RNA in situ hybridization. In addition, the expression of monokine induced by gamma-interferon (Mig) mRNA, a CXC chemokine closely related to IP-10, was studied as well. The expression of IL-8 receptors A and B (CXCR1 and CXCR2, respectively) was investigated by immunohistochemistry. The results were correlated with the number and phenotype of epidermotropic T cells. Epidermal expression of IP-10 and Mig mRNA was detected in 10 of 11 and seven of 11 epidermotropic CTCL, respectively, but not in five nonepidermotropic CTCL biopsies or normal human skin. Epidermal IP-10 and Mig mRNA expression correlated with epidermal infiltration of CD4+ T cells, but not of CD8+ T cells. IL-8 mRNA was demonstrated in the epidermis of only two of 15 CTCL biopsies, and was associated, in both cases, with accumulation of neutrophils. Consistently, immunostaining of the (intraepidermal) T cells with antibodies against CXCR1 and CXCR2 was not observed. In conclusion, the results of this study indicate that IP-10, and to a lesser extent Mig, but not IL-8 is involved in the preferential infiltration of neoplastic CD4+ T cells in CTCL.  相似文献   

17.
Clinical neutrophil (PMN) priming is the net result of multiple stimuli, with intracellular calcium ([Ca2+]i) being a key second messenger for PMN agonists such as the chemokines. Thus, [Ca2+]i measurement may be a robust tool for the assessment of global PMN activation. [Ca2+]i is difficult to measure in complex biologic environments, however, so data in this area are limited. We therefore developed an in vitro system to measure the effects of chemokines on PMN [Ca2+]i. PMN were isolated from volunteer blood. PMN [Ca2+]i responses to interleukin (IL)-8 and Growth-Related Oncogene (GRO)-alpha were studied by fura-2-acetoxymethyl ester fluorescence with or without reincubation in autologous plasma just prior to study. The effects of IL-8 and GRO-alpha on PMN [Ca2+]i at ascending doses, with or without plasma reincubation, given sequentially and in the presence or absence of extracellular calcium, were studied. PMN basal [Ca2+]i was increased by plasma, as were low-dose priming and higher-dose spike responses to IL-8. GRO-alpha caused a more pronounced priming of PMN [Ca2+]i than IL-8 at low doses, although significantly lower peak responses were observed with GRO-alpha than IL-8 at higher doses. Plasma suppressed both priming and spike responses to GRO-alpha. When given serially at clinically relevant agonist doses, GRO-alpha was permissive of IL-8 signaling, whereas IL-8 blocked GRO-alpha signaling. IL-8 generates high [Ca2+]i spikes using intracellular calcium stores only. GRO-alpha produces lower [Ca2+]i spikes despite using both intra- and extracellular stores. Plasma preincubation has profound effects on PMN [Ca2+]i responses to chemokines. These can be measured accurately, as described. In clinically relevant environments, IL-8 and GRO-alpha interact in a regulatory fashion. GRO-alpha may act as a priming agent, with IL-8 activating PMN functions requiring high [Ca2+]i. This cross-cooperation is probably terminated by IL-8 regulation of GRO-alpha activity at the C-X-C chemokine receptor 2.  相似文献   

18.
19.
The effect of anticoagulant (heparin vs EDTA) on chemokine induced CD11b upregulation on neutrophils, eosinophils, and monocytes in human whole blood was determined. For most of the chemokines (IL-8, GRO-alpha, MCP-1, MIP-1 alpha) the difference in the response of leukocytes in EDTA anticoagulated blood vs those in heparinized blood was the degree of their maximal response, with a slightly higher maximal increase in CD11b expression usually seen in cells from EDTA anticoagulated blood. Two chemokines were exceptions to this: RANTES and MIP-1 beta. RANTES is considered to be a stimulator of monocytes and eosinophils and not of neutrophils. As expected, neutrophils in heparinized whole blood did not respond to RANTES; however, neutrophils in EDTA anticoagulated blood had a significant increase in CD11b when exposed to high concentrations (1 microM) of RANTES. RANTES-induced CD11b expression on monocytes and eosinophils in these samples were the same in either heparin or EDTA. In EDTA anticoagulated blood, MIP-1 beta did not elicit a response in either monocytes, eosinophils or neutrophils; however, in heparinized blood, all three cell types increased CD11b expression upon exposure to 1 microM MIP-1 beta.  相似文献   

20.
The capacity of dendritic cells (DC) to initiate immune responses is dependent on their specialized migratory and tissue homing properties. Chemotaxis and transendothelial migration (TEM) of DC were studied in vitro. Immature DC were generated by culture of human monocytes in granulocyte-macrophage colony-stimulating factor and IL-4. These cells exhibited potent chemotaxis and TEM responses to the CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, RANTES, and monocyte chemotactic protein-3, and weak responses to the CC chemokine MIP-3beta and the CXC chemokine stromal cell-derived factor (SDF)-1alpha. Maturation of DC induced by culture in lipopolysaccharide, TNF-alpha or IL-1beta reduced or abolished responses to the former CC chemokines but markedly enhanced responses to MIP-3beta and SDF-1alpha. This correlated with changes in chemokine receptor expression: CCR5 expression was reduced while CXCR4 expression was enhanced. These findings suggest two stages for regulation of DC migration in which one set of chemokines may regulate recruitment into or within tissues, and another egress from the tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号