共查询到19条相似文献,搜索用时 62 毫秒
1.
铅基钙钛矿材料由于具有独特的光学和电学特性成为光电应用的新星材料。但是铅金属对环境不友好,制约着其商业化的发展。而锡基钙钛矿材料由于其具有低毒性、较宽的吸收光谱、更高的迁移率使其成为有希望实现商业化的光伏器件。目前,锡基钙钛矿太阳电池的光电转换效率(PCE)已超过14%,但远远不及铅基钙钛矿器件。本综述讨论了锡基钙钛矿材料不同组分工程、不同钙钛矿器件结构以及不同添加剂对锡基钙钛矿器件性能和稳定性的影响,并对钙钛矿太阳电池的发展进行总结和展望,旨在为制备高效稳定的锡基钙钛矿太阳电池提供有益的启示。 相似文献
2.
有机金属卤化物钙钛矿太阳能电池近几年来发展迅速,其器件认证光电转效率已达22.1%。同时,这类电池具有成本低廉、能量回收期短等优势,有望实现商业化应用。然而,钙钛矿吸光层本身在湿度较大、温度较高及光照等条件下不稳定,并且与其他功能层组装成器件时易引发电极腐蚀、深缺陷态等问题,使得器件不稳定性加剧。越来越多的文献报道了提升器件稳定性的方法,主要集中在:(1)从成分优化方面提升钙钛矿吸光层的稳定性;(2)从器件结构优化方面提升器件的稳定性。在成分优化方面,科研者们主要从钙钛矿ABX_3结构成分、结构维度和保护层的使用等角度提升钙钛矿材料的稳定性。(1)在满足容差因子t或八面体因子μ的条件下,将甲脒离子、铯离子等疏水或耐热基团引入ABX_3结构的A位中,而X位掺入溴离子或硫氰根离子能提升钙钛矿材料的抗湿性,或者整合单一位置优势得到混合位Cs_x(MA_(0.17)FA_(0.83))_(100-x)Pb(I_(0.83)Br_(0.17))_3不仅能提升材料的热稳定性,而且可使器件的转换效率提高至21.1%。(2)较低结构维度(主要为二维)钙钛矿材料的研究也获得了一定的进展,例如制得的BA_(0.05)(FA_(0.83)Cs_(0.17))_(0.95)Pb(I_(0.8)Br_(0.2))_3材料的湿度和光照稳定性优异。(3)疏水性能好、电荷传输能力优异的保护层如丁基膦酸4-氯化铵或苄胺等同样可增强钙钛矿吸光层的稳定性。在器件结构优化方面,研究者们分别从电子传输材料(如二氧化锡、镧掺杂锡酸钡等)、空穴传输材料(如CuGaO_2、酞菁铜等)和上电极(碳、铜等)等角度提升器件的稳定性。其中,(1)紫外光催化活性差、电子迁移率优异、能带结构适宜的镧掺杂锡酸钡组成的器件展现了优异的光照稳定性。(2)由化学和热稳定性优异的酞菁铜组成的器件也获得了良好的热稳定性和17.5%的转换效率。(3)优化上电极方面,将碳电极应用到大面积器件上时,器件呈现了良好的湿度和光照稳定性;而铜电极替换金或银电极时,器件的光电转换效率同样超过20%,并且其热和光照稳定性良好。本文主要从钙钛矿吸光层材料成分和器件结构两大角度梳理了关于提升器件稳定性的研究现状,分别对钙钛矿吸光层ABX_3的组分、钙钛矿材料的结构维度、其他功能层等优化方面提升器件稳定性的工作进行了综述。最后,结合现有的研究成果展望了有机金属卤化物钙钛矿太阳能电池的发展趋势。 相似文献
3.
近年,全无机钙钛矿太阳电池因其具有优良的光电性能及优异的热稳定性成为光伏领域的关注热点之一。该类电池现获得了21.15%的光电转换效率(PCE),并且还有望得到进一步地提高。然而,目前获得高效率全无机钙钛矿电池的有效面积都相对较小,多数处于0.1 cm2水平,大面积全无机钙钛矿太阳电池的PCE会因有效面积的增加而大幅降低。而大面积电池的制备对于全无机钙钛矿太阳电池的商业化应用极其重要。为了让全无机钙钛矿类材料在光伏领域上得到更好地应用,对全无机钙钛矿构建多组分复合材料结构及制备工艺调整是最简单而有效的方法。本文针对目前大面积全无机钙钛矿太阳电池进行系统综述,对较大面积的全无机钙钛矿太阳电池已取得的成果进行总结。针对目前大面积全无机钙钛矿太阳电池所处现状进行分析,并且对可制备大面积钙钛矿太阳电池的工艺及电池性能优化策略进行了系统性的归纳,最后对其领域未来发展趋势进行了展望。 相似文献
4.
5.
钙钛矿太阳电池及其叠层电池发展迅速,成为当前光伏领域的研究热点.有机无机卤化钙钛矿材料具有吸收系数高、带隙可调、制备工艺简单等优点,其单结太阳电池实验室效率从2009年的3.8%迅速提升到25.2%,两端钙钛矿/硅叠层太阳电池效率达到29.15%.钙钛矿太阳电池种类丰富,依据器件结构主要分为介孔型钙钛矿太阳电池和平面型(nip结构和pin结构)钙钛矿太阳电池.大量研究工作通过钝化工程、添加剂工程、能级匹配工程、组分工程等先进技术获得高质量的钙钛矿吸收层和光电性能好、低成本、无污染的电荷传输层,提升电荷提取效率,使得每种器件结构均能实现22%以上的超高效率.但常规钙钛矿材料光、湿、热稳定性差,部分研究通过改善吸收层的成分,研发出准二维钙钛矿太阳电池与全无机钙钛矿太阳电池,更加贴合实际应用.考虑到不同的应用场景,钙钛矿太阳电池又进一步分化出柔性钙钛矿太阳电池与半透明钙钛矿太阳电池,透明导电电极的研发成为该领域的重要突破方向.基于钙钛矿的叠层电池中,高效钙钛矿/硅叠层电池是研究重点,通过优化陷光策略和添加剂工程等方法降低光学损失与电学损失,能够在材料成本增长不大的情况下显著提升电池效率,极具市场竞争力.本文主要阐述了钙钛矿太阳电池及其叠层电池的发展历史、器件种类和结构、功能层材料特性、性能优化策略,并对其面临的挑战以及发展趋势进行了总结与展望. 相似文献
6.
彭茂民;潘可亮;周然锋;夏虹;刘丽;彭西甜 《复合材料学报》2025,42(7):3658-3669
金属卤化物钙钛矿纳米晶因具独特的物理和化学特性,如高光吸收系数、窄发射光谱、高光致发光量子产率以及可调的组分与尺寸等,在发光二极管、太阳能电池、光电探测器、催化、激光、荧光传感等光电技术领域展现出广泛的应用潜力,已成为材料科学领域的研究热点。本文基于金属卤化物钙钛矿纳米晶在荧光传感领域的应用,重点归纳了金属卤化物钙钛矿纳米晶的制备技术、荧光传感机制及在该领域的应用研究进展;同时讨论了其在荧光传感领域应用中面临的稳定性问题及解决方案;最后,总结和展望了具有更高光学性能和稳定性的金属卤化物钙钛矿材料的发展方向。本文旨在通过对其在荧光传感领域应用的综述分析总结,为促进研究人员开发高效稳定的钙钛矿材料提供借鉴。 相似文献
7.
自2009年第一次报道以来,有机-无机杂化钙钛矿太阳电池(PSCs)的光电转换效率(PCE)从3.8%提升至25.5%,已可以与商业化的晶体硅太阳电池相媲美,引起全世界研究者的极大关注.然而,由于杂化物晶体结构中有机成分弱的化学键,器件长期稳定性受到很大的影响.近年来,用无机Cs+完全取代有机基团构成全无机卤化物钙钛矿被认为是解决太阳电池稳定性问题的有效途径.在Cs基钙钛矿之中,CsPbBr3具有最优异的耐热、耐光、耐湿性能,作为顶电池具有与晶体硅太阳电池组成长寿命叠层太阳电池的潜力.本文系统地综述了CsPbBr3 PSCs领域的研究进展,首先介绍了CsPbBr3 PSCs的发展历史及CsPbBr3的晶体结构和基本特性,随后阐述了CsPbBr3薄膜的制备方法、CsPbBr3的元素掺杂改性、器件的界面工程等方面的研究进展;最后,讨论了当前存在的问题和提高CsPbBr3 PSCs性能的未来方向,为进一步推动钙钛矿太阳电池的实用化进程提供参考. 相似文献
8.
M.Mateen Manoj Kumar Zulfiqar Ali Zulqarnain Arain 丁勇 任英科 刘成 刘雪朋 戴松元 杨熠 《SCIENCE CHINA Materials》2019,(2):161-172
光伏领域的研究者们在不断探索可以用于高效太阳能转换的新材料.研究每种新型光伏材料的主要目的是通过简单的制造工艺和较低的生产成本来实现更高的能量产出.新兴的钙钛矿材料也在竞争行列之中.通过不同的化学计量调控和工艺改进,钙钛矿太阳电池在过去的几年中实现了最高的光电转换效率,这一技术已经成为未来能量转换材料的有力候选者.到目... 相似文献
9.
10.
Atif Iqbal Muhammad Mateen Zulqarnain Arain 丁勇 任英科 刘成 刘雪朋 张先付 戴松元 蔡墨朗 陈钦 马爽 《SCIENCE CHINA Materials》2020,(12):2477-2486
钙钛矿光吸收层的质量对太阳电池的光伏性能有重要的影响.目前,制备甲基铵基碘化铅钙钛矿(MAPbI3)的方法会产生大量缺陷态,特别是在晶界和薄膜表面,这些问题阻碍了钙钛矿太阳电池性能进一步提升.本文介绍了一种采用乙胺盐酸盐(EACl)添加剂制备高质量MAPbI3的特殊方法,发现EACl可以使得钙钛矿晶体不通过中间相形成,... 相似文献
11.
Solar Cells: Self‐Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite (Adv. Mater. 8/2018)
下载免费PDF全文

Tae Woong Kim Satoshi Uchida Tomonori Matsushita Ludmila Cojocaru Ryota Jono Kohei Kimura Daiki Matsubara Manabu Shirai Katsuji Ito Hiroaki Matsumoto Takashi Kondo Hiroshi Segawa 《Advanced materials (Deerfield Beach, Fla.)》2018,30(8)
12.
Tae Woong Kim Satoshi Uchida Tomonori Matsushita Ludmila Cojocaru Ryota Jono Kohei Kimura Daiki Matsubara Manabu Shirai Katsuji Ito Hiroaki Matsumoto Takashi Kondo Hiroshi Segawa 《Advanced materials (Deerfield Beach, Fla.)》2018,30(8)
Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because of their high photoinduced charge separation and carrier transport performance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system. Here direct observation of the microstructure of the thin film organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identified that the tetragonal and cubic phases coexist at room temperature, and it is confirmed that superlattices composed of a mixture of tetragonal and cubic phases are self‐organized without a compositional change. The organometal halide perovskite self‐adjusts the configuration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perovskite and demonstrates new possibilities as promising materials for various applications. 相似文献
13.
14.
Shuai Gu Renxing Lin Qiaolei Han Yuan Gao Hairen Tan Jia Zhu 《Advanced materials (Deerfield Beach, Fla.)》2020,32(27):1907392
Metal halide perovskites have recently attracted enormous attention for photovoltaic applications due to their superior optical and electrical properties. Lead (Pb) halide perovskites stand out among this material series, with a power conversion efficiency (PCE) over 25%. According to the Shockley–Queisser (SQ) limit, lead halide perovskites typically exhibit bandgaps that are not within the optimal range for single-junction solar cells. Partial or complete replacement of lead with tin (Sn) is gaining increasing research interest, due to the promise of further narrowing the bandgaps. This enables ideal solar utilization for single-junction solar cells as well as the construction of all-perovskite tandem solar cells. In addition, the usage of Sn provides a path to the fabrication of lead-free or Pb-reduced perovskite solar cells (PSCs). Recent progress in addressing the challenges of fabricating efficient Sn halide and mixed lead–tin (Pb–Sn) halide PSCs is summarized herein. Mixed Pb–Sn halide perovskites hold promise not only for higher efficiency and more stable single-junction solar cells but also for efficient all-perovskite monolithic tandem solar cells. 相似文献
15.
16.
All‐inorganic perovskites are considered to be one of the most appealing research hotspots in the field of perovskite photovoltaics in the past 3 years due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. The power‐conversion efficiency has reached 17.06% and the number of important publications is ever increasing. Here, the progress of inorganic perovskites is systematically highlighted, covering materials design, preparation of high‐quality perovskite films, and avoidance of phase instabilities. Inorganic perovskites, nanocrystals, quantum dots, and lead‐free compounds are discussed and the corresponding device performances are reviewed, which have been realized on both rigid and flexible substrates. Methods for stabilization of the cubic phase of low‐bandgap inorganic perovskites are emphasized, which is a prerequisite for highly efficient and stable solar cells. In addition, energy loss mechanisms both in the bulk of the perovskite and at the interfaces of perovskite and charge selective layers are unraveled. Reported approaches to reduce these charge‐carrier recombination losses are summarized and complemented by methods proposed from our side. Finally, the potential of inorganic perovskites as stable absorbers is assessed, which opens up new perspectives toward the commercialization of inorganic perovskite solar cells. 相似文献
17.
《Small Methods》2018,2(5)
Solar‐cell materials with a tetrahedral diamond structure and its derived structures (i.e., zinc blende and chalcopyrite) are the most successful family of materials, with power conversion efficiencies exceeding 20%. Recent breakthroughs based on lead halide perovskites have inspired intensive research on low‐cost photovoltaics beyond diamond‐structured materials. While research has focused on addressing the key challenges faced by lead halide perovskites, that is, the stability and toxicity issues, it is of greater interest to develop perovskites into a new family of solar‐cell materials. Here, the recent efforts toward this goal are reviewed. The focus is on computational materials design, including single, double, 2D, and nonhalide perovskites and perovskite‐like materials. Meanwhile, related experiments are also reviewed with a hope that such this will help identify potential issues as well as enlightening ideas to achieve further computation‐driven materials discovery. 相似文献
18.
David A. Egger Achintya Bera David Cahen Gary Hodes Thomas Kirchartz Leeor Kronik Robert Lovrincic Andrew M. Rappe David R. Reichman Omer Yaffe 《Advanced materials (Deerfield Beach, Fla.)》2018,30(20)
The notion that halide perovskite crystals (ABX3, where X is a halide) exhibit unique structural and optoelectronic behavior deserves serious scrutiny. After decades of steady and half a decade of intense research, the question which attributes of these materials are unusual, is discussed, with an emphasis on the identification of the most important remaining issues. The goal is to stimulate discussion rather than to merely present a community consensus. 相似文献
19.
有机无机复合钙钛矿太阳能电池因具有适合的载流子扩散长度而成为备受关注的有望获得高效率的光伏器件。复合钙钛矿材料本身不含贵金属元素,可以采用液相法或物理气相法低温制备,成本低廉,但目前应用最多的电子传输层材料TiO2需400~500℃煅烧,与柔性基底及低温制备技术适应性差;空穴传输层材料SpiroOMeTAD合成工艺复杂,价格高昂,限制了复合钙钛矿太阳能电池的开发应用。开发和研究导电性好、成本低、稳定性好的电子和空穴传输层材料是复合钙钛矿太阳能电池研究中的一个非常重要的方面。综述了复合钙钛矿太阳能电池中电荷传输层材料的研究进展及发展方向。电子传输层材料方面通过对TiO2的改性以及与石墨烯的复合,采用ZnO、石墨烯或PCBM作为电子传输层材料,以与柔性基底及低温制备技术相适应。空穴传输层材料方面,采用其它低成本、导电性高的有机p型半导体替代spiro-OMeTAD;采用无机空穴传输层材料以避免有机空穴传输层材料的老化问题,提高电池的长期稳定性;利用复合钙钛矿材料兼作吸收层与空穴传输层,制备无空穴传输层材料结构电池以降低成本,提高稳定性。 相似文献