首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
Production of whole-grain products can provide more variety in bakery products and might impact positive health effects due to fermentable soluble fibers. To assess technological quality, micro-scale methods using 10 g of white flour are usually carried out, in particular if amount of material or additives is limited. Using wholemeal flour for micro-scale testing might enhance use efficiency of raw material. Up to date, there is no information, whether micro-scale testing of wholemeal flour provides the same information on techno-functionality as classical methods. Two wheat varieties with the same protein concentration but different bread-making performance were used to analyze this aspect. Micro-scale baking test was optimized for wholemeal flour concerning dough consistency and fermentation time. Wholemeal flour reduced loaf volume, but optimization was successful. Although all processing steps of wholemeal baking test were adapted, differences in loaf volume between the two varieties were only present with white flour. Coarse particles in wholemeal flour may be responsible for reduced gas retention. Decreasing particle size of bran material might reduce adverse effects on loaf volume. A micro-scale baking test using wholemeal flour would have several advantages after correct implementation: lower price, less time and material required, direct measurement of quality aspects.  相似文献   

2.
BACKGROUND: Roller milling of hull‐less barley generates fibre‐rich fractions (FRF) enriched in non‐starch polysaccharides from the endosperm cell walls (β‐glucans and arabinoxylans). This investigation was initiated to compare the suitability of different baking processes and to determine the optimal conditions for incorporation of barley FRF into pan bread. RESULTS: Addition of FRF from waxy and high‐amylose starch hull‐less barley genotypes was evaluated in pan bread prepared from Canada Western Red Spring (CWRS) and Canada Western Extra Strong (CWES) wheat flour. Three bread processes were used: Canadian short process (CSP), remix‐to‐peak, and sponge‐and‐dough. Addition of 20% FRF (equivalent to enrichment with 4.0 g of arabinoxylans and β‐glucans per 100 g of flour) disrupted dough properties and depressed loaf volume. CSP was not suitable for making FRF‐enriched bread because dough could not be properly developed. FRF‐enriched remix‐to‐peak bread was better, especially for the stronger CWES flour. The better bread quality compared to CSP was probably due to redistribution of water from non‐starch polysaccharides to gluten during fermentation prior to remixing and final proof. The sponge‐and‐dough process produced the best FRF‐enriched bread because of the positive effect of sponge fermentation on gluten development and hydration. FRF was added at the dough stage to fully developed dough. CONCLUSION: The method of bread production strongly influences bread quality. Pre‐hydration of FRF improved bread quality. CWRS and CWES flour produced comparable FRF‐enriched sponge‐and‐dough bread. Addition of xylanase to the sponge‐and‐dough formula improved the loaf volume, appearance, crumb structure and firmness of FRF‐enriched bread. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
将发酵麦麸作为功能配料用于高膳食纤维面包面团制作,采用化学分析、高效液相色谱及离子色谱法分析麦麸发酵、面包制作过程及面包中阿拉伯木聚糖溶解性和酚类化合物释放。结果表明:随着发酵时间延长,麦麸中水溶性阿拉伯木聚糖、游离酚及阿魏酸含量逐渐增加。发酵处理后,麦麸中游离阿拉伯糖、葡萄糖和果糖含量增加,水溶性阿拉伯木聚糖含量显著提高,分支度显著下降(P<0.05)。面包搅拌、醒发及烘焙过程中,阿拉伯木聚糖不断溶解,酚类化合物持续释放;富含发酵麦麸的面包中水溶性阿拉伯木聚糖含量及分支度更高。模拟肠、胃消化后,富含发酵麦麸的面包中游离酚和阿魏酸含量更高,且吸收效果好。此外,发酵麦麸显著提高了面包的抗氧化活性。  相似文献   

4.
Free amino acids, peptides, and vital wheat gluten were investigated to determine their effect on the mixing and frozen dough baking properties of wheat flour. Addition of 1% cysteine and aspartic acid decreased and glutamic acid, histidine, arginine, and lysine increased the mixing tolerance of flour. Cystine, methionine, tryptophan, and phenylalanine increased but isoleucine, histidine, glycine, arginine, glutamic acid, aspartic acid, and lysine decreased loaf volume of nonfrozen dough breads. However cystine, methionine, tryptophan, and phenylalanine did not increase loaf volume of bread prepared from frozen dough. Vital wheat gluten increased mixing tolerance and bread loaf volume only for the nonfrozen dough. However, wheat gluten hydrolysate, corn, and bonito peptides decreased mixing tolerance after optimum mixing time and were effective in increasing loaf volume for both frozen and nonfrozen dough. As the amount of corn and bonito peptide increased, specific loaf volumes also increased. Addition of 2.5% corn peptide was most effective in increasing loaf volume of frozen dough bread. Crust browning and crumb stickiness increased, whereas crumb softness decreased with addition of peptides. Addition of less than 1% peptide did not adversely affect the aftertaste and off‐flavor of bread. These results suggest that addition of peptides are effective for improving the baking quality of frozen dough, whereas amino acids and gluten have no effect.  相似文献   

5.
Although much research has been conducted on wheat flour dough rheology, the principal focus has been the role of the protein fraction. Starch is the main component of flour and plays a key role in dough dynamic properties, particularly during heating. This study assesses the effect of two different waxy flours, a durum and a bread wheat, and their blends with commercial bakers' flour on dough rheology during heating with a concurrent investigation into baking performance. Both waxy flour blends produced similar effects on dough rheological behaviour despite differences in protein content, acting to delay gelatinisation and reduce storage modulus. The main effects in bread were to increase loaf expansion during baking and reduce loaf firmness. It is postulated these effects are largely water mediated, with the higher swelling ability of the waxy starch granules reducing overall water availability and driving complete gelatinisation to higher temperatures.  相似文献   

6.
Physical, rheological and baking properties of decorticated cracked broadbeans‐wheat composite flours were studied and the acceptability of the Egyptian ‘Balady’ bread was evaluated by sensory tests. Decorticated cracked broadbeans flour (DCBF) was used to replace 5%, 10%, 15% and 20% of the wheat flour (WF) in bread. Farinographic studies showed that water absorption, arrival time and dough development time increased as the amount of DCBF increased, while dough stability time increased at 5% and 10% of DCBF substitution and decreased at 15% and 20% substitution. Also, the extensographic energy of the dough decreased as DCBF substitution increased, while the ratio between resistence and extensibility increased. There was a decrease in peak viscosity with increased amounts of DCBF. A reduction of the diameter and weight of bread loaf was observed as the amount of DCBF increased. The sensory properties of ‘Balady’ bread showed that at the two levels of 5% and 10% DCBF‐substitution, the ‘Balady’ loaves did not show any significant differences (P > 0.05). It is concluded that the replacement of bread flour (WF) with up to 10% decorticated cracked broadbeans flour produced acceptable Egyptian ‘Balady’ bread.  相似文献   

7.
为给安徽省种植小麦品种的品质利用提供参考,以2016年安徽省小麦产业体系收获的33个小麦品种(系)为试验材料,检测其籽粒品质、面团特性、面包烘焙品质、面粉白度、脂肪氧化酶(LOX)活性和类胡萝卜素含量等。结果表明,33个供试品种(系)间的籽粒品质、烘焙品质、白度、LOX活性等品质性状品种间差异均达极显著;面包表皮质地和形状与LOX活性及b值呈显著正相关;面包芯色泽与面团的稳定时间呈极显著正相关,与弱化度呈显著负相关;平滑度与a值、b值和LOX活性呈显著正相关,与L值及白度呈极显著负相关;纹理结构与b值呈显著正相关;面包总分与面团稳定时间呈显著正相关。本研究在安徽省种植小麦品种中筛选出扬麦23、涡麦182、周麦28、安科157和宿4095等面包评分较高的小麦品种。讨论了安徽种植小麦品种的品质性状及其利用等问题。  相似文献   

8.
Soybean (full‐fat and defatted) and barley flours were incorporated into wheat flour at 5, 10, 15 and 20% substitution levels. The gluten content, sedimentation value and water absorption capacity of the flour blends and the mixing time of the dough decreased with increase in the level of soybean and barley flour separately and in combinations. Protein and glutelin contents increased significantly on blending of soyflour (full‐fat and defatted) to bread wheat flour. The breads prepared from the blends also varied in their loaf weight, loaf volume and sensory characteristics. The bread volume decreased with increasing amount of non‐wheat flour substitution. The crumb colour changed from creamish white to dull brown and a gradual hardening of crumb texture was observed as the addition of soybean (full‐fat and defatted) and barley flours increased. At the higher levels, the acceptability declined because of the compact texture of the crumb and the strong flavour of the product. The addition of 10% of soyflour (full‐fat and defatted) or 15% of barley flour, full‐fat soy + barley or defatted soy + barley flour to bread flour produced acceptable bread.  相似文献   

9.
Thirty durum wheat genotypes from ten countries of origin were grown in field plots for two consecutive years. Three of the genotypes were γ‐gliadin 42 types and the remainder were γ‐gliadin 45 types. Among the γ‐gliadin 45 types, six high‐molecular‐weight glutenin subunit (HMW‐GS) patterns were identified: 6 + 8, 7 + 8, 7 + 16, 14 + 15, 20 and 2*, 20. All the γ‐gliadin 42 genotypes contained low amounts of unextractable polymeric protein (UPP) and exhibited low gluten index values and weak gluten properties. The γ‐gliadin 45 genotypes exhibited a wide range of UPP, gluten index and dough strength. HMW‐GS 20 genotypes were generally weak, whereas HMW‐GS 6 + 8 and 7 + 8 genotypes were generally strong. When baked by a lean formulation, long‐fermentation straight‐dough hearth bread process, the durum wheat genotypes exhibited a wide range of baking quality. Loaf volume and bread attributes were strongly correlated with UPP and gluten index. Some of the genotypes exhibited bread attributes and loaf volume equal or slightly superior to those of a high‐quality bread wheat flour. However, even the strongest durum wheat genotypes exhibited inferior fermentation tolerance to the bread wheat flour, as seen by a requirement for lower baking absorption during dough handling and more fragile dough properties when entering the oven. Among the HMW‐GS groups, HMW‐GS 7 + 8 and 6 + 8 exhibited the best and HMW‐GS 20 the poorest baking quality. Farinograph, alveograph and small‐scale extensigraph properties demonstrated that a combination of dough elasticity and extensibility was needed for superior durum wheat baking performance. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
Three Canadian wheat cultivars representing the Canada Western Red Spring, Canada Western Extra Strong and Canada Prairie Spring classes, varying in protein content yet containing similar high‐molecular‐weight glutenin subunits, were evaluated for dough functionality and multiple end‐use properties. The effect of protein content on dough properties and end‐product quality was also studied. Gluten, starch and water‐soluble components were extracted from the flours and reconstituted to make up three samples for each variety to match the protein content of the three parent flours. Empirical and dynamic dough rheological properties, baking (bread and tortilla) performance and noodle‐making properties of the flours were determined using small‐scale techniques. Results indicated that protein content had a significant effect on rheological and end‐use quality of wheat flours. Increase in protein content (of the reconstituted dough) increased mixograph peak height (r = 0.761), peak width, maximum resistance to extension and end‐product quality characteristics such as loaf volume (r = 0.906), noodle firmness and cutting force and decreased storage and loss moduli. Reconstituted flours from the three varieties at the same protein content also showed significant differences in mixing time, mixograph peak height, maximum resistance to extension, composite fineness of pan bread, tortilla diameter, cooked noodle hardness, gumminess and dynamic viscosity of dough. This study indicates that a simple reconstituted dough system can provide an unambiguous assignment of the quantitative and qualitative effects of dough components on dough properties. It has the advantages that any aspect of flour composition can be manipulated and details of the relation between composition and functional behaviour can be obtained for any end‐product. Copyright © 2003 Crown in the right of Canada. Published by Society of Chemical Industry  相似文献   

11.
The effect of partial substitution of wheat flour with reduced‐fat peanut flour at different levels (10, 20, 30, 40, and 50%) on physical parameters, proximate composition, sensory profile, and shelf stability of bread were investigated. Loaf volume, specific volume, and crumb density were significantly (p ≤ .05) reduced with increasing level of substitution with the peanut flour. Peanut flour had significant (p ≤ .05) improvement on the protein content and reduction in carbohydrate content of loaves. Consumers preferred the taste aroma and color of the peanut–wheat flour composite loaves at ≥20% peanut flour inclusion. Freshly baked composite peanut–wheat bread loaves with 10% level of peanut substitution had higher overall acceptability than 100% wheat flour formulation but less microbial stability during storage. Reduced fat‐peanut has potential application for improving the nutritional quality and shelf stability of wheat flour bread.

Practical applications

The demand for convenient alternative to conventional foods is on the increase with the dynamics of the world's social values, lifestyles, and demographic trends. Having peanut incorporated into dough (as one food system) will offer convenience to consumer and therefore add value to bread variety on market shelves. Assessing the influence of the peanut flour on bread quality provides first‐hand information that can facilitate optimization of the baking process toward commercial production of peanut–wheat flour bread.  相似文献   

12.
This study aimed to investigate effect of butter content (0–30 g/100 g flour) and baking conditions hot air baking (HA), microwave baking (MW) and hot air‐microwave baking (HA‐MW) on quality of the rice flour dough and bread. The increased butter (up to 15 g butter/100 g flour) enhanced elastic modulus (G′) and viscous modulus (G″) of dough and specific volume of bread. Additionally, the increased butter improved crust colour and reduced hardness of the bread. The HA‐MW and MW conditions were useful for the gluten‐free bread by reducing baking time and predicted glycemic index (GI), regardless of butter content. However, enthalpy of retrogradation and crystallinity in the HA‐MW and MW bread stored at 4 °C for 7 days were increased and higher than those of the HA bread, indicating a faster staling. The predicted GI of both MW and HA‐MW bread remained at a medium level during storage.  相似文献   

13.
Abstract: The principal objective of this study was to evaluate the capability of electronic (E) nose technology to discriminate refined and whole wheat bread made with white or red wheat bran according to their headspace volatiles. Whole wheat flour was formulated with a common refined flour from hard red spring wheat, blended at the 15% replacement level with bran milled from representative samples of one hard red and 2 hard white wheats. A commercial formula was used for breadmaking. Results varied according to the nature of the sample, that is, crust, crumb, or whole slices. Bread crust and crumb were completely discriminated. Crumb of whole wheat bread made with red bran was distinct from other bread types. When misclassified, whole wheat bread crumb with white bran was almost invariably identified as refined flour bread crumb. Using crust as the basis for comparisons, the largest difference in volatiles was between refined flour bread and whole wheat bread as a group. When refined flour bread crust was misclassified, samples tended to be confused with whole white wheat crust. Samples prepared from whole bread slices were poorly discriminated in general. E‐nose results indicated that whole wheat bread formulated with white bran was more similar in volatile makeup to refined flour bread compared to whole wheat bread made with red bran. The E‐nose appears to be very capable to accommodate differentiation of bread volatiles whose composition varies due to differences in flour or bran type. Practical Application: Consumer preference of bread made using refined flour in contrast to whole wheat flour is partly due to the different aroma of whole wheat bread. This study used an electronic nose to analyze bread volatiles, and showed that whole wheat bread incorporating white bran was different from counterpart bread made using red bran, and was closer in volatile makeup to “white” bread made without bran. Commercial millers and bakers can take advantage of these results to formulate whole wheat flour with brans of preferred type in order to foster increased consumption of whole wheat products which confer many favorable health benefits.  相似文献   

14.
Abdel-Kader ZM 《Die Nahrung》2000,44(6):418-421
Physical, rheological and baking properties of decorticated cracked broadbeans-wheat composite flours were studied and the acceptability of the Egyptian 'Balady' bread was evaluated by sensory tests. Decorticated cracked broadbeans flour (DCBF) was used to replace 5%, 10%, 15% and 20% of the wheat flour (WF) in bread. Farinographic studies showed that water absorption, arrival time and dough development time increased as the amount of DCBF increased, while dough stability time increased at 5% and 10% of DCBF substitution and decreased at 15% and 20% substitution. Also, the extensographic energy of the dough decreased as DCBF substitution increased, while the ratio between resistence and extensibility increased. There was a decrease in peak viscosity with increased amounts of DCBF. A reduction of the diameter and weight of bread loaf was observed as the amount of DCBF increased. The sensory properties of 'Balady' bread showed that at the two levels of 5% and 10% DCBF-substitution, the 'Balady' loaves did not show any significant differences (P > 0.05). It is concluded that the replacement of bread flour (WF) with up to 10% decorticated cracked broadbeans flour produced acceptable Egyptian 'Balady' bread.  相似文献   

15.
16.
Aim of this work is to study the cryoprotective role of extracellular trehalose in the production of bakery products from frozen dough. Therefore, different levels of trehalose (up to 200 ppm) were incorporated in dough/bread samples made from white and whole-wheat flour, and their quality (loaf volume, weight loss during baking, crust and crumb color) and texture characteristics (dough, crust and crumb firmness) were examined during frozen storage. To investigate the role of trehalose on dough behavior, the sugar content (glucose, fructose, and sucrose) of dough samples composed with or without trehalose was monitored, and dough microstructure was also analyzed with scanning electron microscopy. The cryoprotective effect of trehalose was confirmed, and it was found proportional to its level for both flour types. Trehalose can improve dough behavior under freezing conditions in terms of bread volume and texture characteristics.  相似文献   

17.
The utilization of sprout‐damaged wheat flour in pre‐fermentation for sour dough bread‐baking increased lactic acid formation and titratable acidity several fold in comparison to the use of baker's wheat flour, and also resulted in a lactic acid to acetic acid molar ratio acceptable for sour dough bread. Further, enzymic treatment of the sprout‐damaged wheat flour with malted grain flour appared to be necessary for a properly balanced acid formation although the α‐amylase activity of sprout‐damaged wheat flour was quite high. The accumulation of lactic acid in the pre‐ferment decreased in the presence of yeast, and thus the molar ratio of lactic to acetic acid could be adjusted suitable for sour bread‐baking even with homofermentative lactic acid bacteria. Finally, when using mixed culture pre‐ferments of Lactobacillus brevis and Propionibacterium jensenii, at least 0.1% of propionic acid (based on flour weight), sufficient to prevent mold growth in the final bread, was obtained.  相似文献   

18.
BACKGROUND: Water‐extractable arabinoxylan (WEAX) is a minor constituent of wheat grain which influences the properties of wheat dough and its end products while conferring numerous health benefits. Consequently, various applications have been proposed for it in foodstuffs. Fortification of food products with pure WEAX extracts represents a simple means to evaluate its effect in these systems. However, rapid methods to isolate relatively pure WEAX are not available. This study aimed to develop a rapid, technically simple means to extract relatively pure WEAX on a small scale. RESULTS: A simplified process was developed to extract WEAX from wheat flour. After heating, flour WEAX was extracted with water and starch was eliminated by digestion with amyloglucosidase. Most of the protein was removed by adsorption to bentonite and precipitation with 65% ethanol. The final product generated by the developed method consisted of 93 ± 4% arabinoxylan. The WEAX yield was 0.43 ± 0.02% (0.43 ± 0.02 g WEAX/100 g of starting flour) which is higher than that of other methods that generate WEAX of similar purity. CONCLUSION: This method provides a technically simple means to perform small‐scale isolation of WEAX that contains no detectable contaminating protein. This attribute renders it a preferred input for studies assessing the impact of WEAX fortification on food product quality. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Preparation and consumption of bread enriched with flours that contain appreciable amounts of protein, lysine, dietary fiber, and minerals will provide a healthy alternative to consumers and also a lowering of bread making cost in countries where wheat is not a major domestic crop. Addition of rice, corn, and soy flour to bread and durum wheat flours at 10, 20, 30, 40, 50% levels was carried out to examine the effects on the baking (specific volume, color, firmness) and sensory characteristics of bread. Dough rheological properties were also studied using Brabender Farinograph and Extensograph. Results of the present study suggest that incorporation of rice, corn, and soy in bread wheat flour up to a level of 10% (flour basis) and in durum wheat flour up to 20% produces bread without any negative effect in quality attributes such as color, hardness, and flavor and reasonable acceptance offering promising nutritious and healthy alternative to consumers. Increasing levels of substitution (30 and 50%) resulted in decreasing dough strength, extensibility, and loaf volume, due to the replacement of gluten by the added protein. Overall acceptability scores of these breads were found to be very low. The durum flour can be substituted with nongluten flours up to 10% more than the bread wheat flour because of its stronger gluten matrix and better dough rheological characteristics.  相似文献   

20.
Low carbohydrates bread: Formulation,processing and sensory quality   总被引:1,自引:0,他引:1  
A low carbohydrate bread formula was prepared using hard red spring wheat flour, soy protein and vital gluten. Soy protein was treated with ethanol and jet-cooked to remove the beany taste. Vital gluten and soy protein blends were prepared and added to the control flour in order to reduce the final starch content by 52%. The ratio of soy protein:vital gluten was adjusted, based on the Farinograph profile of the blend relative to the control flour. AACC Method 10-09, Straight dough, was used for the baking. The amounts of shortening and yeast were increased, to improve the dough consistency and to reduce beany taste, respectively. A blend of 70% gluten and 30% soy protein was added to replace 50% of the control flour. This blend gave a loaf value similar to the control. Overall, the loaf was softer, darker in colour and the grain was more open than the control. Another blend, with 50% soy nuggets and 50% vital gluten, was added to replace 50% of the control flour. This produced a loaf with 35% less volume, darker colour, and a grain similar to the control. The protein content of the final product was 56%, which is much higher than that reported in the literature. Bread with high protein content is more suitable for use in low carbohydrate diets than bread formulations currently used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号