首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low‐alcohol beer can be obtained by physical and biological methods. The group of biological methods includes modification of the mashing regimes and changes in the fermentation process. The aim of the present work was to study two mashing regimes for low‐alcohol beer production. The increase in the mashing duration at 50 °C led to a linear increase in the extract and the concentration of reducing and fermentable sugars in the wort. It was found that the rate of formation of reducing sugars was higher than that of the formation of fermentable sugars, which can be used for the optimization of the mashing process. The introduction of a pause at 77 °C did not lead to a substantial increase in the concentration of fermentable extract, but did lead to an increase in the total and non‐fermentable extract. The available nitrogen content in the laboratory wort was in the range of 120–150 mg/dm3. As a result of conducting fermentation processes with the top‐fermenting yeast strain Saccharomyces cerevisiae S‐33, it was found that the combination of a small amount of fermentable sugars and a low fermentation temperature led to a beer being obtained that met the requirements for a low‐alcohol beverage. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

2.
The objective was to develop a new simple and quick approach to predict fermentability, based on osmolyte concentration (OC). Eight malts were assayed for diastatic power, starch‐degrading enzymes [α ‐amylase, β ‐amylase and limit dextrinase (LD)] and malt OC (MOC). All malts were mashed to determine wort OC (WOC), real degree of fermentation (RDF) and sugar contents in a small‐scale mashing protocol. The results showed that MOC was correlated with malt α ‐amylase, LD, the resultant WOC, RDF and fermentable sugar (r  = 0.813, 0.762, 0.795, 0.867, 0.744, respectively), suggesting that MOC was discriminating in predicting levels of malt amylolytic enzymes, wort sugar and RDF without the mashing and fermentation process. Moreover, WOC showed stronger correlations with malt α ‐amylase, LD, RDF and fermentable sugars (r  = 0.796, 0.841, 0.884, 0.982, respectively), suggesting that WOC can be used to quickly predict wort sugar contents and RDF without a fermentation step. Furthermore, the effects of mashing temperature and duration on WOC, RDF and sugar contents are discussed. Adjusting mash temperature to 65°C or extending the mash duration dramatically increased RDF and WOC, whereas malt extract was relatively stable. Similarly, WOC showed significant correlations with RDF and fermentable sugars (r  = 0.912 and 0.942, respectively), suggesting that WOC provides a simple and reliable tool to assist brewers to optimize mash parameters towards the production of ideal wort fermentability. In conclusion, the ability of OC to predict malt fermentability and sugar content allows brewers to keep better control of fermentability in the face of variation of malt quality, and to quickly adjust mashing conditions for the consistency of wort fermentability. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

3.
The objective of this study was to develop a temperature programmed mashing profile for 100% buckwheat malt. Both standard brewing methods and a rheological tool (Rapid Visco Analyser) were used to characterise worts and mashes. An optimal grist: liquor ratio of 1:4 was observed. At this ratio, buckwheat malt showed a gelatinisation temperature of 67°C and barley malt 62°C. A one hour stand at 65°C exhibited higher FAN levels, fermentable extracts and lower viscosity values than stands at 67°C or 69°C, and was therefore used in further mashing trials. An extra mashing step of 30 min, at any of the tested temperatures, increased extract values a minimum of 4%, decreased viscosities a minimum of 0.20 mPas, and increased fermentable extracts 12%. Best results were obtained when a mashing‐in temperature was used in the range of 35°C to 45°C. These mashing‐in temperatures were used to design an optimal mashing procedure: 15 min at 35°C; 15 min at 45°C; 40 min at 65°C; 30 min at 72°C; 10 min at 78°C. This program showed higher extract values and fermentable extract values (72.7% and 49.9%) than obtained by congress mashing (65.3% and 40.0%), thus successfully optimising the mashing program.  相似文献   

4.
Starch from malt and solid adjuncts provides the majority of fermentable sugars for fermentation. However, there is no current data on the variation in starch structure (particularly long chained amylose) and its impact on the final wort composition of fermentable sugars, specifically maltose. This is the first study to report variation in amylose structure from barley malt and rice used as an adjunct and how this impacts the production of maltose. We compared four commercial malts with two rice adjuncts mashes, in solid and liquid additions, with an all‐malt mash used as a control. All combinations of malt and rice adjuncts were tested under two grist‐to‐liquor (G:L) ratios (1:3 and 1:4) in a 65°C ramped mash. After mashing, the wort original gravity and maltose concentration were measured. The commercial malts had different malt quality but very similar gelatinisation temperatures (~65°C). The malts varied in starch and amylose contents but had only minor variations in average amylose chain lengths. The two rice adjuncts also had similar average amylose chains lengths, but quite different amylose contents, and hence different gelatinisation temperatures. The results showed that liquid adjunct mashes had higher original gravity and maltose concentration for both G:L ratios. However, there was no consistent result in original gravity or maltose between G:L ratio or adjunct type, suggesting interactions between each malt and rice adjunct. Knowing amylose chain length could improve understanding of the potential maltose levels of the sweet wort prior to fermentation. © 2018 The Institute of Brewing & Distilling  相似文献   

5.
The aim of this research was to investigate the relationship between starch composition in barley and its malted counterpart alongside malt enzyme activity and determine how these factors contribute to the fermentable sugar profile of wort. Two Australian malting barley varieties, Commander and Gairdner, were sourced from eight growing locations alongside a commercial sample of each. For barley and malt, total starch and gelatinisation temperature were taken, and for malt, α‐ and β‐amylase activities were measured. Samples were mashed using two mashing profiles (infusion and Congress) and the subsequent wort sugar composition and other quality measures (colour, original gravity, soluble nitrogen) were tested. Variety had no significant (<0.05) effect on any barley, malt, enzyme or wort characteristics. However, growing location impacted gelatinisation temperature, colour, malt protein content and original gravity. The gelatinisation temperature in malt samples was higher, by ~0.8°C, than in the equivalent barley sample. Several malt samples, even with protein contents <12.0%, had gelatinisation temperature >65°C. The fermentable sugars measured in the malt prior to mashing showed a higher proportion of maltose than glucose or maltotriose. In addition, there were significant differences in the amount of sugar produced by each mashing method with the high temperature infusion producing a higher amount of sugar and proportionally more maltose. There is scope for further research on the effect of genetics and growing environment on gelatinisation temperature, mash performance and fermentable sugar development. Routinely measuring gelatinisation temperature and providing this information on malt specification sheets could help brewers optimise performance. © 2019 The Institute of Brewing & Distilling  相似文献   

6.
Proso millet is a gluten‐free cereal and is therefore considered a suitable raw material for the manufacturing of foods and beverages for people suffering from celiac disease. The objective of this study was to develop an optimal mashing procedure for 100% proso millet malt with a specific emphasis on high amylolytic activity. Therefore, the influence of temperature and pH on the amylolytic enzyme activity during mashing was investigated. Size exclusion chromatography was used to extract different amylolytic enzyme fractions from proso millet malt. These enzymes were added into a pH‐adjusted, cold water extract of proso millet malt and an isothermal mashing procedure was applied. The temperatures and pH optima for amylolytic enzyme activities were determined. The α‐amylase enzyme showed highest activity at a temperature of 60°C and at pH 5.0, whereas the β‐amylase activity was optimum at 40°C and pH 5.3. The limit dextrinase enzyme reached maximum activity at 50°C and pH 5.3. In the subsequent mashing regimen, the mash was separated and 40% was held for 10 min at 68°C to achieve gelatinisation. The next step in the mashing procedure was the mixture of the part mashes. The combined mash was then subjected to an infusion mashing regimen, taking the temperature optima of the various amylolytic enzymes into account. It was possible to obtain full saccharification of the wort with this mashing regimen. The analytical data obtained with the optimised proso millet mash were comparable to barley wort, which served as a control.  相似文献   

7.
To determine the most suitable types of sorghum for whole‐grain adjunct in lager beer brewing, 14 cultivars of five different types: white tan‐plant, white non‐tan‐plant, red non‐tannin, white tannin (type II) and red tannin (type III) were evaluated. The effects of grain type on wort physico‐chemical and sensory quality with raw grain and malt plus commercial enzyme mashing were assessed. Tannin content correlated significantly and negatively with wort extract and fermentable sugars (p < 0.001) and free amino nitrogen (FAN; p < 0.1). This is attributable to inactivation of the exogenous enzymes by the tannins during the mashing process. However, the type II tannin sorghums had wort quality attributes closer to the non‐tannin sorghum types, probably owing to their relatively low tannin content (≤1%). Malting gave a great improvement in wort extract, fermentable sugars and FAN, but substantially influenced wort sensory properties in terms of higher sourness, bitterness and astringency, as well as the expected more malty flavour. Worts from raw red non‐tannin sorghums were similar to those of white tan‐plant sorghums in both physico‐chemical and sensory quality. Thus, red non‐tannin sorghums, in view of their better agronomic quality, have considerable potential as a whole‐grain adjunct in lager beer brewing. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

8.
In this study, high‐pressure treatment (HPT) was applied to the mashing stage of beer production, which involves drying and milling of white malt and subsequent mixing with water. The following parameters were evaluated after pressurisation: β‐glucanase activity, starch gelatinisation and sugar extraction. Evaluation of starch hydrolysis from the malted barley endosperm after HPT was performed by measuring β‐glucanase activity after pressurisation; this enzyme breaks down gums and β‐glucans in wort and is desirable to obtain a good‐quality beer. Soaked malt samples pressurised at 200–600 MPa showed no increase in this activity compared with controls. Conversion of milled malt was evaluated indirectly by measuring the gelatinisation of starch, which began at 400 MPa. Soluble sugars were also measured in pressurised samples from the mashed liquid to investigate saccharification during the mashing stage. After 400 or 600 MPa treatment for 20 min, both the sucrose (g per 100 ml) and extract (l ° kg?1) values were the same as those found in mashed samples following the standard procedure used in the brewing industry (65 °C,90 min). Starch gelatinisation was analysed at different high pressures (200–600 MPa) and it was shown that gelatinisation began at 400 MPa. The HPT time would have to be shorter to make the process commercially attractive. © 2002 Society of Chemical Industry  相似文献   

9.
Dark specialty malts are important ingredients for the production of several beer styles. These malts not only impart colour, flavour and antioxidative activity to wort and beer, they also affect the course of wort fermentations and the production of flavour‐active yeast metabolites. The application of considerable levels of dark malt was found to lower the attenuation, mainly as a result of lower levels of fermentable sugars and amino acids in dark wort samples. In fact, from the darkest caramel malts and from roasted malts, practically no fermentable material can be hydrolysed by pilsner malt enzymes during mashing. Compared to wort brewed with 50% pilsner malt and 50% dark caramel malt or roasted malt, wort brewed with 100% pilsner malt contained nearly twice as much fermentable sugars and amino acids. Reduced levels of yeast nutrients also lowered the fermentation rate, ranging from 1.7°P/day for the reference pilsner wort of 9 EBC to 1.1°P/day for the darkest wort (890 EBC units), brewed with 50% roasted malt. This additionally indicates that lower attenuation values for dark wort are partially due to the inhibitory effects of Maillard compounds on yeast metabolism. The application of dark caramel or roasted malts further led to elevated levels of the vicinal diketones diacetyl and 2,3‐pentanedione. Only large levels of roasted malt gave rise to two significant diacetyl peaks during fermentation. The level of ethyl acetate in beer was inversely related to colour, whereas the level of isoamyl acetate appeared to be affected by the use of roasted malt. With large levels of this malt type, negligible isoamyl acetate was generated during fermentation.  相似文献   

10.
Existing methods of assay of malt starch‐degrading enzymes were critically appraised. New methods based on natural substrates, namely starch and its natural intermediate‐derivative, were developed for all the enzymes, except limit dextrinase for which pullulan was used. Thermostability, optimal temperatures and pHs were established. α‐Amylase and limit dextrinase were the most thermostable and β‐amylase, α‐glucosidase and maltase were the least stable while diastase occupied an intermediate position. The optimal temperatures were congruent with thermostability, β‐ amylase having the lowest (50°C) and α‐amylase the highest (65°C) with the remaining enzymes, including diastase, falling in between. In contrast, α‐amylase has the lowest optimal pH (pH 4.5) and β amylase the highest (pH 5.5) while the others have pHs in between the two values. The roles of the enzymes were evaluated taking into account the level of activity, thermostability, optimum pH, the nature of the product(s), and the relevance to brewing. β‐Amylase production of maltose was synergistically enhanced, mostly by α‐amylase but also limit dextrinase. α‐Glucosidase and maltase are unimportant for brewing, because of their low activity and the negative impact on β‐amylase activity and the negative effect of glucose on maltose uptake by yeast. The starch‐degrading enzymes (diastase) in a gram of malt were able to degrade more than 8 g boiled starch into reducing sugars in 10 min at 65°C. The latter, suggests that it will be possible to gelatinise most of the malt starch at a higher temperature and ensure its hydrolysis to fermentable sugars by mixing with smaller portions of malt and mashing at lower temperatures e.g. 50–60°C.  相似文献   

11.
A holistic view of the fate of barley starch, arabinoxylan and β-glucan throughout malting and brewing is largely missing. Here, an industrial scale malting trial and pilot brewing trial were performed, and the concentration and structural characteristics of carbohydrates were analysed at 28 key points in the process. The barley starch content decreased during malting from 75.0% to 69.7%. During mashing, malt starch was converted to fermentable sugars (75.3%), dextrin (22.8%) or was retained in spent grains (1.8%). Arabinoxylan was partially hydrolysed during malting. Despite mashing-in at 45°C, no further solubilisation of arabinoxylan was observed during mashing. However, the average degree of polymerisation of the soluble arabinoxylan fraction decreased slightly. During fermentation, the arabinoxylan content decreased to 2.5 g/L. The amount of barley β-glucan decreased gradually in time during malting. Of the solubilised β-glucan, 31% was retained in the spent grains during wort filtration, slightly lowering the β-glucan content in the wort. The β-glucan content remained at 0.5 g/L during fermentation. Sucrose was hydrolysed during mashing, probably by barley invertases. From the total amount of malt used, 41.0% was converted to fermentable sugars. This mashing yield could have been improved by the full hydrolysis to fermentable sugars of the present β-glucan (to 41.1%), the remaining starch in spent grains (to 42.0%) and dextrin in wort (to 50.3%). These results provide more insight into the carbohydrate conversions during malting and brewing and can act as a baseline measurement for future work. © 2020 The Institute of Brewing & Distilling  相似文献   

12.
The effect of a high temperature‐high humidity treatment (HT‐HHT) of germinated unkilned barley on malt quality and extract characteristics was studied. Two samples of six‐row barley were steeped to 42% moisture and germinated, with and without gibberellic acid, at 15°C for 5 days. The germinated barley was placed in a high humidity (75–80%) atmosphere maintained at 45, 55, and 65°C, respectively. For each temperature, treatments were carried out for 30, 60 and 90 min, respectively. At 45°C for 30–60 min, the malts developed high diastatic power and proteolytic activity. The high values for cold water extract and reducing sugars in the extracts indicated extensive amylolysis of starch granules during HT‐HHT of the germinated barley at 55–65°C. The worts were light in colour, with a pH of 5.3–5.8 and titratable acidity was in the range of 0.09‐0.23%. A consistent increase in soluble nitrogen and Kolbach index was observed in the malts treated at 45–55°C for 30–90 min. Free α‐amino nitrogen of the malts was in the desirable range of 120–150 mg L?1. Therefore, HT‐HHT can be useful for improving malt modification and wort characteristics and to shorten the germination time for malts from poor quality barley.  相似文献   

13.
Varieties of a cereal may have a considerable influence on malting qualities owing to variations in the physicochemical properties of the grains. This research was aimed at assessing the influence of five teff varieties on malt quality attributes. The teff samples were malted using previously optimized malting conditions and mashed with the congress mashing procedure. In this research, the Kuncho teff variety was malted in a one year period after harvesting, whereas the other four varieties were malted after three years of storage. Alpha‐ and β‐amylase, and limit dextrinase activity, were in the ranges 14–68, 10–440 and 375–1072 U/kg, respectively. Extracts ranged from 54% for Dessie to 74% for Ivory teff. Free amino nitrogen, protein content, soluble nitrogen, Kolbach index, viscosity and wort colour were in the ranges 160–364 mg/L, 8.6–13.6%, 532–1048 mg/100 g, 24–50%, 1.441–1.629 mPa s and 5.9–9.0 EBC units, respectively. High‐performance liquid chromatographic analysis for individual fermentable sugars revealed that the highest value in all varieties was recorded for glucose followed by maltose. The concentration of glucose ranged from 9.49 g/L in Brown teff, to 19.42 g/L in Ivory teff, whereas maltose ranged from 2.95 g/L in Dessie teff to 16.1 g/L in Kuncho teff. All of the malt quality attributes considered in this study were markedly influenced (p < 0.05) by the type of teff cultivar. It was concluded that the use of different teff varieties yielded malts with significantly different malt quality attributes. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

14.
Despite the increasing demand, the production of non‐alcohol beers is still limited by unsatisfactory or artificial flavour and taste. In this study, a novel approach to producing non‐alcohol beer is presented, in which the alcohol‐reducing techniques, limited fermentation and vacuum distillation were combined. Starting from barley and wheat malts, wort with a low level of fermentable sugars was prepared by infusion mashing and lautering. Limited fermentation was carried out by Saccharomycodes ludwigii at 18°C. When the level of fermentable sugar was reduced by 25%, the fermented wort was quickly cooled from 18 to 0°C and held at that temperature for two days. The young beer was obtained after degassing and removal of yeast and was then subjected to vacuum distillation at 0.06 MPa to remove the alcohol. The concentrated extract is suitable for storage and transportation. The final product of non‐alcohol beer was obtained by dilution with deoxygenated water and carbonation with 6.0 g/L CO2, followed by addition of 8–12% of regular beer and equilibration for 2–3 days to develop normal beer aroma. The results showed that the non‐alcohol beer had several favourable properties, including the alcohol level of <0.5% (v /v), colour 7.0 (EBC), thiobarbituric acid value of 1.05 and ratio of alcohols to esters of 1.08. Compared with other methods for the production of non‐alcohol beer, this novel approach produced a favourable alternative to regular beers with similar flavour characteristics and satisfactory stability. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

15.
High‐pressure treatment, which is an effective means of enhancing enzymatic reactions, was implemented during beer mashing to increase the production yield of fermentable sugar (FS). The malt solution was heated (62, 67, and 72°C) under pressure [0.1 (1 atm), 2, 50 and 100 MPa], and the FS was measured. The amount of FS reached an equilibrium level, which was the highest at 67°C and at 2 MPa. The pressures were 2, 50, 100, and 0.1 MPa in decreasing order of FS amount at 67°C. The temperatures were 67, 72 and 62°C in decreasing order of FS amount at 2 MPa. With a mechanistic approach, only the effect of pressure on gelatinization was analysed. The gelatinization degrees were also higher at pressures higher than 0.1 MPa. This observation highlights the positive effect (increasing the FS yield) of high‐pressure treatment on beer mashing. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

16.
Preliminary microbiological studies carried out on sorghum grains showed that the major microorganisms found were mainly bacteria and that aflatoxin‐producing fungi were not found. The effect of added commercial enzyme preparations and different infusion mashing temperatures on extract yield, from sorghum malted at 30 °C, was studied. The infusion mashing method (65 °C) developed for mashing well‐modified barley malt produces poor extract yields with sorghum malt. The extract yield from the sorghum malt in this study was very low with infusion mashing at 65 °C, without the addition of commercial enzyme preparations. A higher extract yield was obtained from the sorghum malt, without the commercial enzyme addition, when using infusion mashing at 85 °C. Both infusion mashing temperatures (65 and 85 °C) showed an improved extract yield over the control malt when commercial enzyme preparations were used during mashing of the sorghum malt. The added enzyme preparations resulted in a higher extract yield from the germinated sorghum when infusion mashing was performed at 65 °C over mashing at 85 °C. The use of individual commercial enzymes (α‐amylase, β‐glucanase, protease, xylanase, saccharifying enzyme and combinations of some hydrolytic enzyme) increased extract yields, when complemented with the enzymes that had developed in the sorghum malt. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

17.
The cause of the high glucose to maltose ratio in sorghum malt worts was studied. Mashing temperature and pH strongly affected both the amount of glucose and the proportion of glucose relative to total fermentable sugars. The relative proportion of glucose was higher when mashing was performed. at pH 4.0, close to the pH optimum for sorghum alpha-glucosidase, than at the natural pH of the mash (pH 6.0–5.5). Mashing according to the EBC procedure using an enzymic malt extract with pre-cooked malt insoluble solids producing a wort containing maltose and glucose in an approximately 4:1 ratio, whereas mashing with a malt extract without pre-cooking the malt insoluble solids resulted in a wort with approximately equal amounts of maltose and glucose. Both treatments gave the same quantity of total fermentable sugars and amount of wort extract. Sorghum alpha-glucosidase was confirmed to be highly insoluble in water. All or virtually all activity was associated with the insoluble solids. Hence, it appears that the high amount of glucose formed when sorghum malt is mashed conventionally is due to alpha-glucosidase activity. Pre-cooking the malt insoluble solids inactivates the alpha-glucosidase, preventing the hydrolysis of maltose to glucose.  相似文献   

18.
To gain further technological knowledge of mashing, pilot scale mashing trials were carried out varying mashing programme (upward/isothermal mashing), milling procedure, grist:liquor ratio, time of mash stands, and grist modification level (well and poorly modified malt). During mashing β‐glucan, free amino nitrogen (FAN) and extract contents were analysed as key indicators for cytolysis, proteolysis, and amylolysis, respectively. The malt modification was of major impact for the β‐glucan release in contrast to a variation of milling procedure and of grist:liquor ratio. Extended stands lead to increased final values only for poorly modified malt. Similarly, FAN release was predetermined by malt modification while variation of milling and of grist:liquor ratio was not relevant in contrast to stand extension. None of the variations applied influenced extract yield as long as gelatinization temperature was reached. Greatest gains occurred around 57°C. In conclusion, wort quality is critically determined by malt modification. Mashing with well modified malt in combination with short stands should result in a mash of low β‐glucan and sufficient FAN level without losing extract yield. However, for poorly modified malt the variation of mashing parameters has an impact on the key indicators in which cytolysis plays the dominating role.  相似文献   

19.
Acidified wort produced biologically using lactic acid bacteria (LAB) has application during sour beer production and in breweries adhering to the German purity law (Reinheitsgebot ). LAB cultures, however, suffer from end product inhibition and low pH, leading to inefficient lactic acid (LA) yields. Three brewing‐relevant LAB (Pediococcus acidilactici AB39, Lactobacillus amylovorus FST2.11 and Lactobacillus plantarum FST1.7) were examined during batch fermentation of wort possessing increasing buffering capacities (BC). Bacterial growth was progressively impaired when exposed to higher LA concentrations, ceasing in the pH range of 2.9–3.4. The proteolytic rest (50°C) during mashing was found to be a major factor improving the BC of wort. Both a longer mashing profile and the addition of an external protease increased the BC (1.21 and 1.24, respectively) compared with a control wort (1.18), and a positive, linear correlation (R 2 = 0.957) between free amino nitrogen and BC was established. Higher levels of BC led to significant greater LA concentration (up to +24%) after 48 h of fermentation, reaching a maximal value of 11.3 g/L. Even higher LA (maximum 12.8 g/L) could be obtained when external buffers were added to wort, while depletion of micronutrient(s) (monosaccharides, amino acids and/or other unidentified compounds) was suggested as the cause of LAB growth cessation. Overall, a significant improvement in LA production during batch fermentation of wort is possible when BC is improved through mashing and/or inclusion of additives (protease and/or external buffers), with further potential for optimization when strain‐dependent nutritional requirements, e.g. sugar and amino acids, are considered. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

20.
A procedure is given for assessing that proportion of wort viscosity which is attributable to β-glucan. Worts obtained from unkilned samples of malt which have been processed for 54 or 72 h show enhanced viscosity. This is principally due to β-glucan although the contribution of other constituents, absent from the wort of fully modified malt, is of significance. Barley variety is shown to have a pronounced effect on wort viscosity. Insoluble β-glucan is brought into solution in mashes at 65° C. The β-glucan isolated from malt which has been inactivated using aqueous ethanol prior to extraction at 65° C, is of higher specific viscosity than that isolated from control worts prepared at the same temperature. The introduction of a rest by mashing initially at 40° C results in the production of wort of lower viscosity, a decrease in the β-glucan content of the wort and a reduction in the specific viscosity of the β-glucan. There is no apparent relationship between the endo-β-glucanase content of the malts and either the viscosity of derived worts or the degree of breakdown of β-glucan which occurred during malting and mashing. Abrasion of barley, which is a factor assisting the distribution of enzymes during malting, acts to reduce wort viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号