首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, grass carp peptides were prepared by enzymatic hydrolysis of grass carp protein using the combination of Alcalase and Neutrase, and angiotensin‐I converting enzyme (ACE) inhibitory activity in vitro, antihypertensive activity in vivo, antioxidant activities, and physicochemical properties of peptides achieved from grass carp protein were characterised after ultrafiltration and desalted processes using mixed ion exchange resins. The purified peptides exhibited strong ACE inhibitory activity (IC50 = 105 μg mL?1), antihypertensive activity with the maximal drop for systolic blood pressure (SBP) of 43 mmHg at a dosage of 100 mg per kg body weight in spontaneously hypertensive rat (SHR), and antioxidant activities indicated by thiobarbituric acid‐reactive substance values in a liposome‐oxidising system, radical‐scavenging activity and chelation of metal ions (Fe2+). The molecular weight of peptides was <1000 Da. Compared to grass carp protein, the peptides separated from enzymatic hydrolysates possessed similar amino acid compositions, but contained higher concentrations of essential amino acids. Moreover, the peptides exhibited excellent solubility at a wide range of pH values from 2 to 10, and lower apparent viscosity than the protein. The peptides separated from enzymatic hydrolysates might be used as a promising ingredient in antihypertensive functional foods and nutraceuticals.  相似文献   

2.
Angiotensin I‐converting enzyme (ACE) inhibitory peptides from the shrimp shell waste (SSW) were isolated using different proteases. The orthogonal test results showed alcalase hydrolysates with ACE inhibitory activity of 67.07% under the optimal hydrolysis conditions of 60 °C hydrolysis temperature, pH = 9.5, 25 g L?1 substrate and 4000 U g?1 of enzyme, whereas neutral protease hydrolysates had an ACE inhibitory activity of 84.04% under the hydrolysis temperature of 50 °C at pH = 7.0 with 25 g L?1 of substrate and in the presence of 2000 U g?1 of enzyme. Neutral protease was more suitable for the production of ACE inhibitory peptides from SSW, where peptides with MW <5 kDa were recommended. The results of this study indicated that peptides obtained from SSW are as beneficial as antihypertension compounds in the functional food resources.  相似文献   

3.
Bovine collagen was isolated from connective tissue, a by‐product in the meat processing industry and characterised by SDS‐PAGE. Alcalase and papain were employed to generate collagen hydrolysates with different degree of hydrolysis (DH). In vitro angiotensin I‐converting enzyme (ACE) inhibitory activities were evaluated and the two most potent hydrolysates from each enzyme were separated by two‐step purification. Both alcalase‐catalysed and papain‐catalysed hydrolysates exhibited strong ACE inhibitory capacities with IC50 values of 0.17 and 0.35 mg mL?1, respectively. Purification by ion‐exchange chromatography and gel filtration chromatography revealed higher ACE inhibitory activities in one fraction from each enzyme with IC50 values of 3.95 and 7.29 μg mL?1. These peptide fractions were characterised as 6‐12 amino acid residues by MALDI‐TOF/MS. The peptides retained their activity (>90%) after exposure to processing temperature and pH and in vitro simulated gastrointestinal digestion. The present results demonstrated that collagen peptides can be utilised for developing high value‐added ingredients, for example ACE inhibitory peptides.  相似文献   

4.
The angiotensin I‐converting enzyme (ACE)‐inhibitory activities of catfish (Clarias batrachus) muscle protein hydrolysates were investigated. Thermolytic digests of C. batrachus sarcoplasmic and myofibrillar proteins exhibited inhibitory activity towards ACE and were purified with the aim of ultrafiltration, gel filtration and reversed‐phase high‐performance liquid chromatography (RP‐HPLC). The amino acid sequences of hydrolysates with the highest ACE‐inhibitory activities were determined using electrospray quadrupole time‐of‐flight tandem mass spectrometry (ESI‐TOFQ MS/MS). The sequences of GPPP (IC50 = 0.86 μm ) and IEKPP (IC50 = 1.2 μm ) corresponding to the fragments 986–989 and 441–445 of myosin‐I heavy chain were identified for the sarcoplasmic and myofibrillar protein hydrolysates, respectively. Peptide GPPP exhibited a mixed‐type inhibition whereas peptide IEKPP could only bind to the active sites of ACE. The results demonstrate that hydrolysates of C. batrachus muscle proteins obtained by thermolysin may contain bioactive peptides.  相似文献   

5.
This study investigates the effects of fermentation conditions on the production of angiotensin‐converting enzyme inhibitory (ACE‐I) peptides in yogurt by Lactobacillus helveticus 881315 (L. helveticus) in the presence or absence of Flavourzyme®, which is derived from a mould, Aspergillus oryzae and used for protein hydrolysis in various industrial applications. Optimal conditions for peptides with the highest ACE‐I activity were 4% (v/w) inoculum size for 8 h without Flavourzyme® supplementation, and 1% inoculum size for 12 h when combined with Flavourzyme®. The yogurt fermented by L. helveticus resulted in IC50 values (concentration of inhibitor required to inhibit 50% of ACE activity under the assayed conditions) of 1.47 ± 0.04 and 16.91 ± 0.25 mg mL?1 with and without Flavourzyme® respectively. Seven fractions of ACE‐I peptides from the yogurt incorporated with L. helveticus and Flavourzyme® were separated using the preparative high‐performance liquid chromatography. Fraction (F3) showed the highest ACE‐I activity with an IC50 of 35.75 ± 5.48 μg mL?1. This study indicates that yogurt may be a valuable source of ACE‐I peptides, which may explain the outcomes observed in the experimental and clinical studies and foresee the application of fermented milk proteins into functional foods or dietary supplements.  相似文献   

6.
BACKGROUND: In Tunisia the cuttlefish‐processing industry generates large amounts of solid wastes. These wastes, which may represent 35% of the original material and constitute an important source of proteins, are discarded without any attempt at recovery. This paper describes some functional properties and the angiotensin I‐converting enzyme (ACE)‐inhibitory activity of protein hydrolysates prepared by hydrolysis of cuttlefish (Sepia officinalis) by‐products with crude enzyme extract from Bacillus licheniformis NH1. RESULTS: Cuttlefish by‐product protein hydrolysates (CPHs) with different degrees of hydrolysis (DH 5, 10 and 13.5%) were prepared. All CPHs contained 750–790 g kg?1 proteins. Solubility, emulsifying capacity and water‐holding capacity increased while fat absorption and foaming capacity decreased with increasing DH. All hydrolysates showed greater fat absorption than the water‐soluble fraction from undigested cuttlefish by‐product proteins and casein. CPHs were also analysed for their ACE‐inhibitory activity. CPH3 (DH 13.5%) displayed the highest ACE inhibition (79%), with an IC50 value of 1 mg mL?1. CONCLUSION: Hydrolysis of cuttlefish by‐product proteins with alkaline proteases from B. licheniformis resulted in a product with excellent solubility over a wide pH range and high ACE‐inhibitory activity. This study suggests that CPHs could be utilised to develop functional foods for prevention of hypertension. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Glutaminase (EC 3.5.1.2) was applied in this work to induce deamidation and hydrolysis of casein. Some reaction conditions based on casein deamidation were studied. Three casein hydrolysates with degree of deamidation of 2.8%, 5.8% and 8.5%, or degree of hydrolysis of 2.5%, 3.4% and 4.9%, respectively, were prepared at casein concentration 5% (w/v), glutaminase addition level 400 U kg?1 casein, reaction temperature 37 °C and reaction times 6, 12 and 24 h, respectively. Evaluation results showed that when iron (II) was added at 60 μm , iron (II)‐chelating powers of three hydrolysates were 41.1, 45.4 and 55.3%, while that of original casein and EDTA were 36.1 and 13.6%. Calcium (II)‐chelating power of three hydrolysates was 1.23, 1.41 and 1.49 mmol g?1 casein, whereas that of original casein was 1.05 mmol g?1 casein. Three hydrolysates also had ACE‐inhibitory activity in vitro, with IC50 values from 0.75 to 2.34 mg mL?1.  相似文献   

8.
BACKGROUND: Bioactive peptides might be released from precursor proteins through enzymatic hydrolysis. These molecules could be potentially employed in health and food products. In this investigation, ovine milk caseinate hydrolysates obtained with a novel microbial protease derived from Bacillus sp. P7 were evaluated for antioxidant, antimicrobial, and angiotensin I‐converting enzyme (ACE)‐inhibitory activities. RESULTS: Antioxidant activity measured by the 2,2′‐azino‐bis‐(3‐ethylbenzothiazoline)‐6‐sulfonic acid method increased with hydrolysis time up to 2 h, remaining stable for up to 4 h. Hydrolysates showed low 2,2‐diphenyl‐1‐picrylhydrazyl radical‐scavenging abilities, with higher activity (31%) reached after 1 h of hydrolysis. Fe2+‐chelating ability was maximum for 0.5 h hydrolysates (83.3%), decreasing thereafter; and the higher reducing power was observed after 1 h of hydrolysis. ACE‐inhibitory activity was observed to increase up to 2 h of hydrolysis (94% of inhibition), declining afterwards. 3 h hydrolysates were shown to inhibit the growth of Bacillus cereus, Corynebacterium fimi, Aspergillus fumigatus, and Penicillium expansum. CONCLUSION: Ovine caseinate hydrolyzed with Bacillus sp. P7 protease presented antioxidant, antihypertensive, and antimicrobial activities. Hydrolysis time was observed to affect the evaluated bioactivities. Such hydrolysates might have potential applications in the food industry. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Gelatin (90.6 ± 0.1%) was optimally prepared by response surface methodology from yellowfin tuna (Thunnus albacares, YT) abdominal skin. To investigate bioactive properties of enzymatic hydrolysates from the abdominal skin gelatin (ASG), ASG was hydrolysed with alcalase, protamex, neutrase and flavourzyme as affected by hydrolysis time. Antioxidant, nitrite scavenging and angiotensin‐I converting enzyme (ACE) inhibitory activities of the hydrolysates were determined. Antioxidant activities of the hydrolysates were found through linoleic acid peroxidation inhibitory effects. Alcalase‐derived hydrolysates (AHs) were more effective than others in metal ions chelating, superoxide anion scavenging and hydroxyl radical scavenging activities (P < 0.05). AHs showed significantly stronger nitrite scavenging activities (44.4–60.7%) than others (P < 0.05). Fraction A from AH showed strong ACE inhibitory activity (IC50 of 0.75 mg mL?1). These results suggest that YT ASG and its enzymatic hydrolysates could be functional food and/or pharmaceutical ingredients with potent antioxidant, anticarcinogenic and antihypertensive benefits.  相似文献   

10.
The interactions between the flavan‐3‐ol (?)‐epigallocatechin‐3‐gallate (EGCG) and bovine β‐casein in phosphate‐buffered saline (PBS) of pH 6.5 subjected to thermal processing at various temperatures (25–100 °C) were investigated using fluorescence quenching. The results indicated that different temperatures had different effects on the structural changes and EGCG‐binding ability of β‐casein. At temperatures below 60 °C, the β‐casein–EGCG interaction changed little (> 0.05) with increasing temperature. At temperatures above 80 °C, native assemblies of β‐casein in solution dissociated into individual β‐casein molecules and unfolded, as demonstrated by a red shift of the maximum fluorescence emission wavelength (λmax) of up to 8.8 nm. The highest quenching constant (Kq) and the number of binding sites (n) were 0.92 (±0.01) × 1013 m ?1 s?1 and 0.73 (±0.02) (100 °C), respectively. These results provide insight into the potential of interactions between β‐casein–EGCG that may modulate bioactivity or bioavailability to be altered during thermal process.  相似文献   

11.
To manipulate enzymatic hydrolysis of tilapia (Oreochromis niloticus) muscle protein for production of bioactive peptides, its reaction kinetics was intensively studied. The study showed that the production of peptides with different bioactive properties including antioxidant activity, angiotensin‐I‐converting enzyme (ACE) inhibition and Ca‐binding property and their kinetics were affected by the degree of hydrolysis and substrate concentration. A comparative study on reaction kinetics found that the kinetic parameters for the production of each bioactive peptide are unique, that is, the maximum initial velocity, Vmax, for hydrolysis of protein was as high as 1.07 mg mL?1 min?1, but that for the production of peptides with antioxidant activity and Ca‐binding property were very low, range of 7.14–66.7 μg mL?1 min?1, and that for the production of peptides with ACE inhibitory activity was the lowest, at 2.57 μg mL?1 min?1. This knowledge of reaction kinetics of protein hydrolysis would be useful for manipulating and optimising the production of peptides with desired bioactive properties.  相似文献   

12.
通过纳米粒度分析、傅立叶红外光谱(FTIR)、乳化性、乳化稳定性、蛋白溶解性、抗氧化性及ACE抑制率的测定,分析探讨酪蛋白及其不同水解度(DH 2.4%、4.5%、7.1%、8.3%)的嗜酸乳杆菌胞壁蛋白酶(CEP)酶解产物的结构及功能特性。FTIR分析表明CEP酶解改变了酪蛋白各种构象所占的比例,酪蛋白二级结构发生了不同程度的变化;纳米粒度分析表明酪蛋白颗粒大小随水解的加深先减小后增大,其水解物颗粒在DH 4.5%时最小,乳化稳定性最大;酪蛋白的乳化性随水解的加深先增大后减小,DH 7.1%时增至最大,与其溶解性的变化趋势一致;此外酪蛋白的酶解物具有一定的ACE抑制活性及抗氧化性,且DPPH清除能力在一定范围内随水解度及浓度的增大而增大,当DH为8.3%,浓度为5mg/mL时,DPPH清除能力增大至35.00%。因此CEP酶解可有效改善酪蛋白的结构及功能特性,为乳源性功能多肽的开发提供理论依据。  相似文献   

13.
分别以碱性蛋白酶Alcalase和中性蛋白酶Neutrase对花生分离蛋白进行水解,制备花生分离蛋白水解物,并测定不同水解时间所得产物对血管紧张素转化酶(ACE)的抑制活性。未水解的花生分离蛋白没有ACE抑制活性,用中性蛋白酶Neutrase水解所得的水解物显示弱ACE抑制活性。然而,碱性蛋白酶Alcalase水解物具有很强的ACE抑制活性,水解0.5h时水解物活性最高,其半抑制浓度为(IC50)0.56mg/ml。本研究表明,当用碱性蛋白酶Alcalase水解时,花生分离蛋白是生产ACE抑制肽的良好蛋白质来源,花生分离蛋白碱性蛋白酶Alcalase水解物可作为具有降压功能的功能食品添料。  相似文献   

14.
Removal of salts from protein hydrolysate mixture on large scale is very difficult and relatively inefficient. Selecting practical proteinase system and hydrolysis conditions for the production of whey protein isolate (WPI) enzymatic hydrolysates with high angiotensin I‐converting enzyme (ACE) inhibitory activity and low ash content is very useful. The effect of alcalase, neutrase, trypsin and their combined system, i.e. alcalase‐neutrase and trypsin‐neutrase, under two different hydrolysis conditions, i.e. pH‐controlled and pH‐spontaneous drop, on the formation of ACE‐inhibitory peptides and the characteristics of WPI hydrolysate was investigated. Results showed that the ACE‐inhibitory activity of WPI hydrolysate obtained with alcalase was significantly higher than that of its trypsin or neutrase hydrolysate obtained at the same hydrolysis time by both pH‐controlled and pH‐spontaneous drop method (P < 0.05). The WPI hydrolysate obtained after 3 h incubation with alcalase plus 2 h with neutrase under pH‐spontaneous drop condition possessed the highest ACE‐inhibitory activity of 54.30% and the lowest ash content of 2.95%. This is practical as a functional ingredient in the food industry because of its high ACE‐inhibitory capability, commercial availability in large supply of alcalase and neutrase and no needing for additional desalting process.  相似文献   

15.
Inadequate postharvest handling and storage under high temperature and relative humidity conditions produce the hard‐to‐cook (HTC) defect in beans. However, these can be raw material to produce hydrolysates with functional activities. Angiotensin I‐converting enzyme (ACE) inhibitory and antioxidant capacities were determined for extensively hydrolysed proteins of HTC bean produced with sequential systems Alcalase‐Flavourzyme (AF) and pepsin–pancreatin (Pep‐Pan) at 90 min ACE inhibition expressed as IC50 values were 4.5 and 6.5 mg protein per mL with AF and Pep‐Pan, respectively. Antioxidant activity as Trolox equivalent antioxidant capacity (TEAC) was 8.1 mm  mg?1 sample with AF and 6.4 mm  mg?1 sample with Pep‐Pan. The peptides released from the protein during hydrolysis were responsible for the observed ACE inhibition and antioxidant activities. Nitrogen solubility, emulsifying capacity, emulsion stability, foaming capacity and foam stability were measured for limited hydrolysis produced with Flavourzyme and pancreatin at 15 min. The hydrolysates exhibited better functional properties than the protein concentrate.  相似文献   

16.
Sweet potato protein hydrolysates (SPPH) with angiotensin I-converting enzyme (ACE) inhibitory activity were prepared by papain, pepsin and alcalase under high hydrostatic pressure (HHP, 100–300 MPa). HHP significantly increased degree of hydrolysis (DH), nitrogen recovery (NR) and molecular weight (MW) <3 kDa fractions contents of SPPH by all three enzymes (P < 0.05). MW < 3 kDa peptide fractions from SPPH by alcalase under 100 MPa showed the highest ACE inhibitory activity (IC50 value 32.24 µg mL−1), and was subjected to purification and identification by semi-preparative RP-HPLC and LC-MS/MS. Fifty-four peptides ranged from 501.28 to 1958.88 Da with 5–18 amino acids were identified and matched sporamin A and B sequences. Five identified peptides with sequences of VSAIW, AIWGA, FVIKP, VVMPSTF and FHDPMLR displayed good ACE inhibitory activity with the contribution of Val, Trp, Phe and Arg. Thus, SPPH by enzymatic hydrolysis under HHP can be potentially used in functional food.  相似文献   

17.
响应面法优化酶解花椒籽蛋白制备降血压肽工艺   总被引:1,自引:0,他引:1  
利用响应面法优化酶解花椒籽蛋白制备降血压肽的工艺条件。采用不同蛋白酶水解花椒籽蛋白,以酶解物对血管紧张素转换酶(angiotensin converting enzyme,ACE)抑制率为指标,筛选出制备花椒籽蛋白降血压肽的最佳蛋白酶。在单因素试验基础上,根据Box-Behnken中心组合试验设计原理,考察酶解时间、加酶量、酶解温度和pH值对血管紧张素转换酶抑制率的影响。结果表明:回归模型能较好地反映各因素水平与响应值之间的关系,并获得酶解花椒籽蛋白制备降血压肽的最佳工艺条件为:底物质量浓度3 g/100 mL、酶解时间4.9 h、加酶量10 200 U/g、酶解温度37.4 ℃、pH 6.9,在此条件下,所得酶解产物的ACE抑制率为68.00%。  相似文献   

18.
BACKGROUND: Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above‐ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin‐converting enzyme (ACE‐I)‐inhibitory activity. RESULTS: Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE‐I‐inhibitory activity (IC50 0.0191 mg protein mL?1) and were very similar to those from control beans in terms of ACE‐I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. CONCLUSION: The present results suggest the use of spoiled bean seeds, e.g. anthracnose‐damaged beans, as an alternative for the isolation of ACE‐I‐inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry  相似文献   

19.
Bioconversion of isoflavone glucosides and antioxidant activity by probiotic strain (Bifidobacterium longum) during soymilk fermentation was investigated, as well as partial characterisation of the produced enzyme β‐glucosidase. The enzyme has higher affinity for genistin than for other substrates assayed. Maximum activity occurred at 42 °C and at pH 6.0; keeping 70–80% of activity for 60 days stored at low temperatures. Bifidobacterium longum grew well in soymilk (8.26 log CFU mL?1 and pH of 3.9 at 24 h) and were produced in good quantities of organic acids. High hydrolysis degree of isoflavone glucosides (81.2%) was observed at 24 h. Enhancements in bioactivity were assessed in fermented soymilk by monitoring the radical‐scavenging activity, antioxidant activity and DNA protective action. The use of probiotic Bifidobacterium strain as β‐glucosidase producer increased bioactive isoflavone content and demonstrated that this enzyme plays a key role in the bioavailability of soymilk isoflavones, reducing the bioconversion time compared to other studies.  相似文献   

20.
BACKGROUND: Angiotensin I‐converting enzyme (ACE) plays an important physiological role in regulating blood pressure. The elevation of blood pressure could be suppressed by inhibiting ACE. ACE inhibitory peptides derived from food proteins could exert antihypertensive effects without side effects. Acetes chinensis is a marine shrimp suitable for the production of ACE inhibitory peptides. The principal objective of this study was to screen for the significant variables, and further to optimize the levels of the selected variables, for the enzymatic production of ACE inhibitory peptides from Acetes chinensis. RESULTS: Plackett–Burman design and response surface methodology were employed to optimize the peptic hydrolysis parameters of Acetes chinensis to obtain a hydrolysate with potent ACE inhibitory activity. The peptic hydrolysis variables were subject to a Plackett–Burman design for screening the main factors. The selected significant parameters such as pH, hydrolysis temperature and enzyme/substrate (E/S) ratio were further optimized using a central composite design. The optimized conditions were: pH 2.5, hydrolysis temperature 45 °C, E/S ratio 17 800 U kg?1 shrimp and substrate concentration 200 g L?1. The results showed that 3–5 h hydrolysis could result in a hydrolysate with ACE inhibition IC50 of 1.17 mg mL?1 and a high DH of 25–27%. CONCLUSION: Plackett–Burman design and RSM performed well in the optimization of peptic hydrolysis parameters of Acetes chinensis to produce hydrolysate with ACE inhibitory activity. A hydrolysate with potent ACE inhibitory activity and high degree of hydrolysis was obtained, so that the yield of ACE inhibitory peptides in it was high. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号