首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precipitation chemistry, deposition, nutrient pools and composition of soils and soil water, as well as an estimate of historical deposition of sulphur (S) and inorganic nitrogen (N) for the period 1860-2008, were determined in primeval deciduous and coniferous forests at the sites Javornik and Pop Ivan, respectively. Measured S throughfall inputs of 10 kg ha− 1 year− 1 in 2008 were similar to those estimated for the period 1900-1950 at both sites. The highest estimated S inputs were in the 1980s. Measured bulk deposition of N in 2008 was lower at Pop Ivan (5.6 kg ha− 1 year− 1) compared to Javornik (12 kg ha− 1 year− 1). Significantly lower NO3 deposition was both estimated and measured at Pop Ivan. Higher soil base cation concentrations were observed at well-buffered Javornik underlain by flysch (Ca pool of 2046 kg ha− 1 and base saturation of 29%) compared to Pop Ivan underlain by crystalline schist (Ca pool of 186 kg ha− 1 and base saturation of 6.5%). The soil pool of organic carbon (C) was higher at Pop Ivan (212 t ha− 1) compared to Javornik (127 t ha− 1). The C concentration was positively correlated with organic N in the soil (p < 0.001) at both sites, but the mass average C/N ratio in the forest floor was lower at Javornik (22) than at Pop Ivan (26). High N leaching of 17 kg ha− 1 year− 1 at the 90 cm depth was measured in the soil water at Javornik, suggesting high mineralization and nitrification rates in old growth deciduous forests in the area. Despite relatively low Al concentrations in the soil water, a low soil water Bc/Al ratio (0.9) (Bc = Ca + Mg + K) was found in the upper mineral soil at Pop Ivan. This suggests that the spruce forest ecosystems in the area are vulnerable to anthropogenic acidification and to the adverse effects of Al on forest root systems.  相似文献   

2.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

3.
A study was conducted to assess the potential of nitrate-nitrogen (NO3-N) and fluoride (F) contamination in drinking groundwater as a function of lithology, soil characteristics and agricultural activities in an intensively cultivated district in India. Two hundred and fifty two groundwater samples were collected at different depths from various types of wells and analyzed for pH, electrical conductivity (EC), NO3-N load and F content. Database on lithology, soil properties, predominant cropping systems, fertilizer and pesticide uses were also recorded for the district. The NO3-N load in groundwater samples were low ranging from 0.12 to 6.58 μg mL− 1 with only 8.7% of them contained greater than 3.0 μg mL− 1 well below the 10 μg mL− 1, the threshold limit fixed by WHO for drinking purpose. Samples from the habitational areas showed higher NO3-N content over the agricultural fields. The content decreased with increasing depth of wells (r = − 0.25, P ≤ 0.01) and increased with increasing rate of nitrogenous fertilizer application (r = 0.90, P ≤ 0.01) and was higher in areas where shallow- rather than deep-rooted crops (r = − 0.28, = ≤ 0.01, with average root depth) are grown. The NO3-N load also decreased with increasing bulk density (r = − 0.73, P ≤ 0.01) and clay content (r = − 0.51, P ≤ 0.01) but increased with increasing hydraulic conductivity (r = 0.68, P ≤ 0.01), organic C (r = 0.78, P ≤ 0.01) and potential plant available N (r = 0.82, P ≤ 0.01) of soils. Fluoride content in groundwater was also low (0.02 to 1.15 μg mL− 1) with only 4.0% of them exceeding 1.0 μg mL− 1 posing a potential threat of fluorosis. On average, its content varied little spatially and along depth of sampling aquifers indicating little occurrence of F containing rocks/minerals in the geology of the district. The content showed a significant positive correlation (r = 0.234, = ≤ 0.01) with the amount of phosphatic fertilizer (single super phosphate) used for agriculture. Results thus indicated that the groundwater of the study area is presently safe for drinking purpose but some anthropogenic activities associated with intensive cultivation had a positive influence on its loading with NO3-N and F.  相似文献   

4.
Wood ash (3.1, 3.3 or 6.6 tonnes dry weight ha− 1) was used to fertilize two drained and forested peatland sites in southern Sweden. The sites were chosen to represent the Swedish peatlands that are most suitable for ash fertilization, with respect to stand growth response. The fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the forest floor, measured using opaque static chambers, were monitored at both sites during 2004 and 2005 and at one of the sites during the period 1 October 2007-1 October 2008. No significant (p > 0.05) changes in forest floor greenhouse gas exchange were detected. The annual emissions of CO2 from the sites varied between 6.4 and 15.4 tonnes ha− 1, while the CH4 fluxes varied between 1.9 and 12.5 kg ha− 1. The emissions of N2O were negligible. Ash fertilization increased soil pH at a depth of 0-0.05 m by up to 0.9 units (p < 0.01) at one site, 5 years after application, and by 0.4 units (p < 0.05) at the other site, 4 years after application. Over the first 5 years after fertilization, the mean annual tree stand basal area increment was significantly larger (p < 0.05) at the highest ash dose plots compared with control plots (0.64 m2 ha− 1 year− 1 and 0.52 m2 ha− 1 year− 1, respectively). The stand biomass, which was calculated using tree biomass functions, was not significantly affected by the ash treatment. The groundwater levels during the 2008 growing season were lower in the high ash dose plots than in the corresponding control plots (p < 0.05), indicating increased evapotranspiration as a result of increased tree growth. The larger basal area increment and the lowered groundwater levels in the high ash dose plots suggest that fertilization promoted tree growth, while not affecting greenhouse gas emissions.  相似文献   

5.
The atmospheric fluxes of N2O, CH4 and CO2 from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 μmol m2 h1, 11.9 to 5168.6 μmol m2 h1 and 0.69 to 20.56 mmol m2 h1 for N2O, CH4 and CO2, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N2O and CH4 fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N2O and CO2 fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH4+-N contents, as well as the soil porosity. However, only soil NH4+-N concentration had significant effects on CH4 fluxes.  相似文献   

6.
Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO2 and N2O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO3 L− 1 solution (rate: 90 mL day− 1) for 125 days at two different temperatures (10 and 20 °C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO3 concentration, NH4+ concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO2 and N2O) were determined in the undisturbed soil columns. The A horizon at 20 °C showed the highest rates of NO3 removal (1.56 mg N-NO3 kg−1 DW soil day− 1) and CO2 and N2O production (5.89 mg CO2 kg−1 DW soil day− 1 and 55.71 μg N-N2O kg−1 DW soil day− 1). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO3 ha− 1 year− 1, and potential greenhouse gas emissions of 5620 kg CO2 ha− 1 year− 1 and 240 kg N-N2O ha− 1 year− 1.  相似文献   

7.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

8.
Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30 cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)i/(X/Al)BG (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30 cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93) ≥ Sb (4.06) ≥ As (3.04) > Zn (1.71) ≥ Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0) > Pb (12.4) > Cu (4.48) ≥ As (3.43) ≥ Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO3, which is a typical acidic air pollutant. There was a strong correlation between Sb and NO3 concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO3] = 21.1 [dissolved Sb], r = 0.938, p < 0.0001, n = 182). Using this correlation, total (cumulative) inputs of NO3 were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7 t/ha at Mt. Kinsyo (most polluted), 8.6 t/ha at Mt. Tsukuba (moderately polluted), and 5.8 t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at present. However, the concentrations of some elements are within a harmful range, according to the Ecological Soil Screening Levels determined by the U.S. Environmental Protection Agency.  相似文献   

9.
Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha− 1) in late fall 2005 via surface spreading on un-tilled soil (SSLMB), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg dw ha− 1) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SSDMB). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L− 1 during application-induced tile flow. SSLMB application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p < 0.05), but not A plots (> 0.05). PBDE mass loss via tile (0-2 h post-application) as a percent of mass applied was ~ 0.04-0.1% and ~ 0.8-1.7% for A and SSLMB, respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha− 1 yr− 1, respectively. Total PBDE concentration in soil (0-0.2 m) after both applications was 115 ng g− 1 dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration = 17 ng L− 1) and PFOA (12 ng L− 1) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (< 0.05) land application treatment effects (SSLMB > A > C for tile and SSLMB and A > C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were found between SSDMB and DI treatments (PBDE/PFAS were not measured). But for many metals (Cu, Se, Cd, Mo, Hg and Pb) both SSDMB and DI loads were significantly higher than those from C, but only during < 100 days post DMB application. Clearly, pre-tilling the soil (e.g., A) prior to surface application of LMB will reduce application-based PBDE and metal contamination to tile drainage and shallow groundwater. Directly injecting DMB in soil does not significantly increase metal loading to tile drains relative to SSDMB, thus, DI should be considered a DMB land application option.  相似文献   

10.
This study reports on the relationship between copper (Cu) behavior and organic matter (OM) transformation along the turbidity gradient in the freshwater reaches of the Gironde Estuary. During a one-year survey, surface water and suspended particulate matter (SPM) were sampled at least monthly at three sites along the Garonne Branch, representing the main fluvial branch of the Gironde Estuary. Additionally, a longitudinal high resolution profile was sampled along the Garonne Branch, covering the turbidity gradient from the river water endmember to the maximum turbidity zone (MTZ). Seasonal variability and spatial distribution of Cu in both the dissolved phases (< 0.2 μm, Cu0.2 and < 0.02 μm, Cu0.02) and particulate Cu (CuP) clearly suggested Cu0.2 addition during summer, that increased the Cu0.2 concentrations by a factor ~ 2, mainly manifested by an increase in the Cu0.02 fraction. At the annual timescale (2004), this internal Cu reactivity increased Cu0.02 fluxes in the Garonne Branch by ~ 20% (3.6 t year−1), with the equivalent of ~ 2.9 t year−1 derived from the CuP fraction and ~ 0.7 t year−1 from the colloidal (0.02-0.2 μm) fraction, without involving and/or affecting the CuC18 (hydrophobic metal-organic complexes) fraction.Combining data on Cu speciation with the results obtained by several independent techniques (DOC and POC measurements, 3D-fluorescence, and TEM) suggested close relationships between Cu behavior and OM transformation/restructuration along the turbidity gradient in the Garonne Branch. The observed Cu0.02 addition was related to increasing humification (humification index HIX increased from 9 to 12, network formation) and labile OM degradation (Iγ/Iα ratio decreased from 0.70 to 0.44), going along with decreasing DOC and POC concentrations. Mass-balances suggest that in the studied system, degradation of OM may account for the release of ~ 25 μmol potentially bioaccessible Cu0.02 per mole of particulate organic carbon mineralized.  相似文献   

11.
Different pelagic areas of the Mediterranean Sea have been investigated in order to quantify physical and biological mixing processes in deep sea sediments. Herein, results of eleven sediment cores sampled at different deep areas (> 2000 m) of the Western and Eastern Mediterranean Sea are presented.210Pbxs and 137Cs vertical profiles, together with 14C dating, are used to identify the main processes characterising the different areas and, finally, controlling mixing depths (SML) and bioturbation coefficients (Db). Radionuclide vertical profiles and inventories indicate that bioturbation processes are the dominant processes responsible for sediment reworking in deep sea environments.Results show significant differences in sediment mixing depths and bioturbation coefficients among areas of the Mediterranean Sea characterised by different trophic regimes. In particular, in the Oran Rise area, where the Almeria-Oran Front induces frequent phytoplankton blooms, we calculate the highest values of sediment mixing layers (13 cm) and bioturbation coefficients (0.187 cm2 yr−1), and the highest values of 210Pbxs and 137Cs inventories. Intermediate values of SML and Db (~ 6 cm and ~ 0.040 cm2 yr−1, respectively) characterise the mesothrophic Algero-Balearic basin, while in the Southern Tyrrhenian Sea mixing parameters (SML of 3 cm and Db of 0.011 cm2 yr−1) are similar to those calculated for the oligotrophic Eastern Mediterranean (SML of 2 cm and Db of ~ 0.005 cm2 yr−1).  相似文献   

12.
Tao Yu 《Water research》2010,44(9):2823-2830
Three submerged membrane bioreactors (MBRs) were operated continuously for 230 days by feeding with synthetic inorganic wastewater (NH4+-N, 100 mg L−1) under different solids retention times (SRTs. M30d, 30 days; M90d, 90 days; Minfinite, no sludge purge) to examine the influence of SRT on nitrification performance and microbial characteristics. All the reactors could oxidize NH4+-N to NO3-N effectively without accumulation of NO2-N. M30d with the shortest SRT showed significantly higher specific ammonium oxidizing rate (SAOR, 0.22 kg NH4+-N kg−1 MLSS day−1) and specific nitrate forming rate (SNFR, 0.13 kg NO3-N kg−1 MLSS day−1) than the other two MBRs (0.12-0.14 kg NO3-N kg−1 MLSS day−1 and 0.042-0.068 kg NO3-N kg−1 MLSS day−1, respectively). Short SRT led to low extracellular polymeric substances (EPS) concentration and long operating cycle. The nitrite oxidizing bacteria (NOB) ratios by both the fluorescence in situ hybridization (FISH) (3.6% for M30d and 2.1-2.2% for M90d and Minfinite) and MPN (1.4 × 107 cells g−1 MLSS for M30d and 6.2 × 105 and 2.7 × 104 cells g−1 MLSS for M90d and Minfinite) analyses showed that M30d favored the accumulation of NOB, which was in accordance with the SNFR result. However, the ammonia oxidizing bacteria (AOB) ratios (3.5%, 3.2% and 4.9% for M30d, M90d and Minfinite) were not in accordance with the SAOR result. PCR-DGGE, clone library and FISH results showed that the fast-growing Nitrosomonas and Nitrobacter sp. were the dominant AOB and NOB, respectively for M30d, while considerable slow-growing Nitrosospira and Nitrospira sp. existed in Minfinite, which might be an important reason why Minfinite had a low SAOR and SNFR.  相似文献   

13.
To investigate the potential role of ammonia in ion chemistry of PM2.5 aerosol, measurements of PM2.5 (particulate matter having aerodynamic diameter < 2.5 µm) along with its ionic speciation and gaseous pollutants (sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and nitric acid (HNO3)) were undertaken in two seasons (summer and winter) of 2007-2008 at four sampling sites in Kanpur, an urban-industrial city in the Ganga basin, India. Mean concentrations of water-soluble ions were observed in the following order (i) summer: SO42− (26.3 µg m− 3) > NO3 (16.8) > NH4+ (15.1) > Ca2+ (4.1) > Na+ (2.4) > K+ (2.1 µg m− 3) and (ii) winter: SO42− (28.9 µg m− 3) > NO3 (23.0) > NH4+ (16.4) > Ca2+(3.4) > K+(3.3) > Na+ (3.2 µg m− 3). The mean molar ratio of NH4+ to SO42− was 2.8 ± 0.6 (mostly >2), indicated abundance of NH3 to neutralize H2SO4. The excess of NH4+ was inferred to be associated with NO3 and Cl. Higher sulfur conversion ratio (Fs: 58%) than nitrogen conversion ratio (Fn: 39%) indicated that SO42− was the preferred secondary species to NO3. The charge balance for the ion chemistry of PM2.5 revealed that compounds formed from ammonia as precursor are (NH4)2SO4, NH4NO3 and NH4Cl. This study conclusively established that while there are higher contributions of NH4+, SO42− to PM2.5 in summer but for nitrates (in particulate phase), it is the winter season, which is critical because of low temperatures that drives the reaction between ammonia and HNO3 in forward direction for enhanced nitrate formation. In summary, inorganic secondary aerosol formation accounted for 30% mass of PM2.5 and any particulate control strategy should include optimal control of primary precursor gases including ammonia.  相似文献   

14.
Biological ammoniacal-nitrogen (NH4+-N) and organic carbon (TOC) treatment was investigated in replicated mesoscale attached microbial film trickling filters, treating strong and weak strength landfill leachates in batch mode at temperatures of 3, 10, 15 and 30 °C. Comparing leachates, rates of NH4+-N reduction (0.126-0.159 g m− 2 d− 1) were predominantly unaffected by leachate characteristics; there were significant differences in TOC rates (0.072-0.194 g m− 2 d− 1) but no trend relating to leachate strength. Rates of total oxidised nitrogen (TON) accumulation (0.012-0.144 g m− 2 d− 1) were slower for strong leachates. Comparing temperatures, treatment rates varied between 0.029-0.319 g NH4+-N m− 2 d− 1 and 0.033-0.251 g C m− 2 d− 1 generally increasing with rising temperatures; rates at 3 °C were 9 and 13% of those at 30 °C for NH4+-N and TOC respectively. For the weak leachates (NH4+-N < 140 mg l− 1) complete oxidation of NH4+-N was achieved. For the strong leachates (NH4+-N 883-1150 mg l− 1) a biphasic treatment response resulted in NH4+-N removal efficiencies of between 68 and 88% and for one leachate no direct transformation of NH4+-N to TON in bulk leachate. The temporal decoupling of NH4+-N oxidation and TON accumulation in this leachate could not be fully explained by denitrification, volatilisation or anammox, suggesting temporary storage of N within the treatment system. This study demonstrates that passive aeration trickling filters can treat well-buffered high NH4+-N strength landfill leachates under a range of temperatures and that leachate strength has no effect on initial NH4+-N treatment rates. Whether this approach is a practicable option depends on a range of site specific factors.  相似文献   

15.
The aims of this study were to determine the factors which control metal and As phytoavailability in the different microenvironments (Sand Dunes, Salt Flat, Dry River and Shrubs) present at a Mediterranean salt marsh polluted by mining wastes. We performed a field study following a plot sampling survey. The analyses of soil parameters (pH, electrical conductivity (EC), organic carbon contents, etc.), total metal and As concentrations and their phytoavailability assessed with EDTA were related to each microenvironment and the corresponding plant species uptake. The averages of pH and EC were slightly alkaline (pH ≈ 7.5) and saline (≈ 2.2 to 17.1 dS m−1) respectively. The soil samples from the Salt Flat subzone showed the highest metal concentrations (e.g. 51 mg kg−1 Cd, 11,600 mg kg−1 Pb) while for As, the highest concentrations occurred in the Dry River (380 mg kg−1 As). The total metal and EDTA-extractable concentrations occurred as it follows: Salt Flat > Dry River > Degraded Dunes > Shrubs. In relation to plant metal and As accumulation, the highest root concentrations were obtained in the species from the Salt Flat subzone: ~ 17 mg kg−1 As, ~ 620 mg kg−1 Pb, for both, Juncus maritimus and Arthrocnemum macrostachyum. However the highest metal and As shoot concentrations occurred in species from the Sand Dunes: ~ 23 mg kg−1 As ~ 270 mg kg−1 Pb for Dittrichia viscosa; ~ 23 mg kg−1 As, ~ 390 mg kg−1 Zn for Crucianella maritima. The occurrence of edaphic gradients including salinity and texture determined the vegetation distribution. However, it cannot be concluded that there was a disturbance due to metal(loid)s soil concentrations in terms of vegetation composition except in the Degraded Dunes and Dry River. The higher EDTA-extractable concentrations were coincidental with the most saline soils but this did not result in higher metal(loid)s plant accumulation.  相似文献   

16.
Experiments were performed to study the airflow rates (AFRs) in a naturally ventilated building through four summer seasons and three winter seasons. The AFRs were determined using heat balance (HB), tracer gas technique (TGT) and CO2-balance as averages of the values of all experiments carried out through the different seasons. The statistical analyses were correlation analysis, regression model and t-test. Continuous measurements of gaseous concentrations (NH3, CH4, CO2 and N2O) and temperatures inside and outside the building were performed. The HB showed slightly acceptable results through summer seasons and unsatisfactory results through winter seasons. The CO2-balance showed unexpected high differences to the other methods in some cases. The TGT showed reliable results compared to HB and CO2-balance. The AFRs, subject to TGT, were 0.12 m3 s−1 m−2, 1.15 m3 s−1 cow−1, 0.88 m3 s−1 LU−1, 56 h−1, 395 m3 s−1 and 470 kg s−1 through summer seasons, and 0.08 m3 s−1 m−2, 0.83 m3 s−1 cow−1, 0.64 m3 s−1 LU−1 39 h−1, 275 m3 s−1 and 328 kg s−1 through winter seasons. The AFRs are not independent values, rather they were estimated for specific reference values, which are: area, cow and LU as well as rates. The emission rates through summer seasons, subject to TGT, were 9.4, 40, 3538 and 2.3 g h−1 cow−1; and through winter seasons were 4.8, 19, 2332 and 2.6 g h−1 cow−1, for NH3, CH4, CO2 and N2O, respectively.  相似文献   

17.
An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links − 2.2 ± 0.4 Mg CO2e ha− 1 y− 1; Parkland − 2.0 ± 0.4 Mg CO2e ha− 1 y− 1). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of − 5.4 ± 0.9 Mg CO2e ha− 1 y− 1. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of − 1.6 ± 0.3 Mg CO2e ha− 1 y− 1. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range between fairways and greens in intensity of management.  相似文献   

18.
Several sources of bacterial inocula were tested for their ability to reduce nitrate and perchlorate in synthetic ion-exchange spent brine (30-45 g/L) using a hydrogen-based membrane biofilm reactor (MBfR). Nitrate and perchlorate removal fluxes reached as high as 5.4 g N m−2 d−1 and 5.0 g ClO4 m−2 d−1, respectively, and these values are similar to values obtained with freshwater MBfRs. Nitrate and perchlorate removal fluxes decreased with increasing salinity. The nitrate fluxes were roughly first order in H2 pressure, but roughly zero-order with nitrate concentration. Perchlorate reduction rates were higher with lower nitrate loadings, compared to high nitrate loadings; this is a sign of competition for H2. Nitrate and perchlorate reduction rates depended strongly on the inoculum. An inoculum that was well acclimated (years) to nitrate and perchlorate gave markedly faster removal kinetics than cultures that were acclimated for only a few months. These results underscore that the most successful MBfR bioreduction of nitrate and perchlorate in ion-exchange brine demands a well-acclimated inoculum and sufficient hydrogen availability.  相似文献   

19.
Year-round bulk air deposition samples were collected at 15 sites in the Pearl River Delta (PRD) on a bimonthly basis from Dec 2003 to Nov 2004, and the particle-phase deposition of BDE-209, PAHs, DDTs and chlordane was measured. The annual deposition fluxes of BDE-209, total PAHs (15 compounds), total DDT (sum of p,p′-DDE, p,p′-DDD, p,p′-DDT, and o,p′-DDT ), and chlordane (sum of trans-chlordane and cis-chlordane) varied from 32.6 to 1970 μg m− 2 yr− 1, 22 to 290 μg m− 2 yr− 1, 0.8 to 11 μg m− 2 yr− 1, and 0.25 to 1.9 μg m− 2 yr− 1, respectively. Spatial variations were higher in the centre of the PRD and lower at the coastal sites for all compounds. The seasonal variations of deposition were found to be compound-dependent, influenced by a number of factors, such as the timing of source input, temperature, and precipitation etc. In particular, source input time affected the deposition fluxes of BDE-209 and high-weight PAHs, while temperature-dependent gas-particle partitioning was a key factor for DDT and light-weight PAH deposition. During the whole sampling period, the atmospheric deposition of BDE-209, ΣPAHs, ΣDDTs, and chlordane onto Hong Kong reached about 93, 86, 2.1 and 2.1 kg yr− 1, respectively, and onto the PRD reached about 13,400, 2950, 82, and 63 kg yr− 1. By comparing the calculated total air deposition with the burden in the soils, the half residual time of BDE-209 in soils was estimated to be 3 years.  相似文献   

20.
A comprehensive study was conducted in July 2006, January 2007 and March 2007 to determine the impacts of some major physicochemical parameters on the level of mercury (Hg) in Puding Reservoir, Guizhou, China. The concentrations of Hg species in the summer campaign were significantly higher (p < 0.01, generally 2 to 3 times higher) than those in the winter and spring campaigns, and no statistical differences were found between the same parameters for the latter two campaigns (p > 0.05). Ancillary parameters including suspended particulate matter (SPM), dissolved organic carbon (DOC), temperature (T), dissolved oxygen (DO), pH, nitrate (NO3) and chloride (Cl) were also measured. During the sampling campaign in July 2006, average values for SPM, DOC, T, and NO3 were all higher compared to the other two campaigns, which suggested a similar seasonal trend between these parameters and Hg species. Seasonal variability may be related to increased runoff. High runoff volume due to abundant precipitation in the summer carried Hg-laden particulates into the reservoir, whereas there was less precipitation in the winter and spring when Hg levels were lower. Increased agricultural activity in the summer season also increased Hg levels in Puding Reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号