首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence of several opiates and cannabinoids in wastewaters and surface waters has been investigated. Most of the compounds (8 out of 11) were identified in both influent and effluents of fifteen wastewater treatment plants (WWTPs). Codeine, morphine, EDDP and methadone were detected in almost all samples with median values of 69 ng/L; 63 ng/L; 28 ng/L and 18 ng/L, respectively, whereas the main cannabinoid metabolite THC-COOH presented a median value of 57 ng/L in influents. A rough estimate of heroin and cannabis consumption was performed from the analysis of target urinary metabolites in wastewater influents. Data obtained from influents of rural and urban WWTPs gave 0.07% of heroin consumption (0.67% for the largest urban WWTP) and 4% consumption of cannabinoids, respectively for the population aged between 15 and 64 years old. The presence of opiates and cannabinoids in surface waters used for drinking water production showed the presence of the same compounds identified in wastewater effluents at concentrations up to 76 ng/L for codeine; 31 ng/L for EDDP; 12 ng/L for morphine and 9 ng/L for methadone at the intake of the DWTP. A complete removal of all studied drugs present in surface water was achieved during the potabilization process except for methadone and EDDP (91% and 87% removal, respectively).  相似文献   

2.
The occurrence of fifty-five pharmaceuticals, hormones and metabolites in raw waters used for drinking water production and their removal through a drinking water treatment were studied. Thirty-five out of fifty-five drugs were detected in the raw water at the facility intake with concentrations up to 1200 ng/L. The behavior of the compounds was studied at each step: prechlorination, coagulation, sand filtration, ozonation, granular activated carbon filtration and post-chlorination; showing that the complete treatment accounted for the complete removal of all the compounds detected in raw waters except for five of them. Phenytoin, atenolol and hydrochlorothiazide were the three pharmaceuticals most frequently found in finished waters at concentrations about 10 ng/L. Sotalol and carbamazepine epoxide were found in less than a half of the samples at lower concentrations, above 2 ng/L. However despite their persistence, the removals of these five pharmaceuticals were higher than 95%.  相似文献   

3.
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed.PPCPs were found to be present at high loads reaching 10 kg day−1 in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3 kg of PPCPs day−1) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.  相似文献   

4.
Endocrine disrupting chemicals (EDCs) have become a major issue in the field of environmental science due to their ability to interfere with the endocrine system. Recent studies show that surface water is contaminated with EDCs, many released from wastewater treatment plants (WWTP). This pilot study used biological (E-screen assay) and chemical (stir bar sorptive extraction-GC-MS) analyses to quantify estrogenic activity in effluent water samples from a municipal WWTP and in water samples of the recipient river, upstream and downstream of the plant.The E-screen assay was performed on samples after solid phase extraction (SPE) to determine total estrogenic activity; the presence of estrogenic substances can be evaluated by measuring the 17-β-estradiol equivalency quantity (EEQ). Untreated samples were also assayed with an acute toxicity test (Vibrio fischeri) to study the correlation between toxicity and estrogenic disruption activity.Mean EEQs were 4.7 ng/L (± 2.7 ng/L) upstream and 4.4 ng/L (± 3.7 ng/L) downstream of the plant, and 11.1 ng/L (± 11.7 ng/L) in the effluent. In general the WWTP effluent had little impact on estrogenicity nor on the concentration of EDCs in the river water. The samples upstream and downstream of the plant were non-toxic or weakly toxic (0 < TU < 0.9) while the effluent was weakly toxic or toxic (0.4 < TU < 7.6). Toxicity and estrogenic activity were not correlated.At most sites, industrial mimics, such as the alkylphenols and phthalates, were present in higher concentrations than natural hormones. Although the concentrations of the detected xenoestrogens were generally higher than those of the steroids, they accounted for only a small fraction of the EEQ because of their low estrogenic potency. The EEQs resulting from the E-screen assay and those calculated from the results of chemical analyses using estradiol equivalency factors were comparable for all samples and closely correlated.  相似文献   

5.
This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200 A/m2) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100 A/m2 did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations.  相似文献   

6.
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L− 1 range up to a maximum of 3.4 μg L− 1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L− 1 range, up to 2 μg L− 1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p < 0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.  相似文献   

7.
8.
1H-benzo-1,2,3-triazole (BTri) and its methylated analogues (tolyltriazole, TTri) are corrosion inhibitors used in many industrial applications, but also in households in dishwashing agents and in deicing fluids at airports and elsewhere. BTri and one of the TTri-isomers (4-TTri) are typical examples of polar and poorly degradable trace pollutants. Benzotriazole elimination in four wastewater treatment plants (WWTP) in Berlin ranged from 20 to 70% for 5-TTRi over 30 to 55% for BTri to insignificant for 4-TTri. WWTP effluent concentrations were in the range of 7-18 μg/L of BTri, 1-5 μg/L of 4-TTri and 0.8-1.2 μg/L of 5-TTri. BTri and 4-TTri proved to be omnipresent in surface waters of the rivers Rhine and Elbe with concentrations increasing from <0.05 μg/L to around 0.5 μg/L of BTri and 0.2-0.5 μg/L of 4-TTri over 600-700 km. Bank filtration is an important process to generate raw water for drinking water production from surface waters. Even after residence times of several months BTri and 4-TTri were determined in concentrations of a few hundred ng/L in bank filtration water. Isotherm data from batch experiments indicate that activated carbon filtration should be suitable to avoid intrusion of TTri into drinking water in partially closed water cycles. For BTri, however, sorption to activated carbon appears to be too weak and ozonation may be mandatory to remove it from raw waters.  相似文献   

9.
Research has shown that exposure to androgens and progestogens can cause undesirable biological responses in the environment. To date, however, no detailed or direct study of their presence in wastewater treatment plants has been conducted. In this study, nine androgens, nine progestogens, and five estrogens were analyzed in influent and final effluent wastewaters in seven wastewater treatment plants (WWTPs) of Beijing, China. Over a period of three weeks, the average total hormone concentrations in influent wastewaters were 3562 (Wujiacun WWTP)-5400 ng/L (Fangzhuang WWTP). Androgens contributed 96% of the total hormone concentrations in all WWTP influents, with natural androgen (androsterone: 2977 ± 739 ng/L; epiandrosterone: 640 ± 263 ng/L; and androstenedione: 270 ± 132 ng/L) being the predominant compounds. The concentrations of synthetic progestogens (megestrol acetate: 41 ± 25 ng/L; norethindrone: 6.5 ± 3.3 ng/L; and medroxyprogesterone acetate: 6.0 ± 3.2 ng/L) were comparable to natural ones (progesterone: 66 ± 36 ng/L; 17α,20β-dihydroxy-4-progegnen-3-one: 4.9 ± 1.2 ng/L; 21α-hydroxyprogesterone: 8.5 ± 3.0 ng/L; and 17α-hydroxyprogesterone: 1.5 ± 0.95 ng/L), probably due to the wide and relatively large usage of synthetic progestogens in medical therapy. In WWTP effluents, androgens were still the dominant class accounting for 60% of total hormone concentrations, followed by progestogens (24%), and estrogens (16%). Androstenedione and testosterone were the main androgens detected in all effluents. High removal efficiency (91-100%) was found for androgens and progestogens compared with estrogens (67-80%), with biodegradation the major removal route in WWTPs. Different profiles of progestogens in the receiving rivers and WWTP effluents were observed, which could be explained by the discharge of a mixture of treated and untreated wastewater into the receiving rivers.  相似文献   

10.
Deoxynivalenol (DON) is one of the most prominent mycotoxins generated by fungi of the generus Fusarium on crops. Its presence in surface waters was recently demonstrated. Here, we elucidate the occurrence and behaviour of DON in three Swiss waste water treatment plants (WWTP) as a result of human consumption and excretion. DON was shown to be omnipresent in the primary effluent samples of these WWTP in concentrations from 32 to 118 ng/L. Corresponding loads were a factor of 1.3–2.3 higher than predicted based on human excretion data from the literature. DON elimination rates in WWTP ranged from 33 to 57%. These rather low percentages were confirmed with a further, more detailled study conducted at WWTP Kloten/Opfikon (average elimination rate 32%). The relative importance of WWTP as a source of DON in surface waters was compared with agricultural emissions due to runoff from Fusarium infected crops. Both sources seem to contribute equally to the total DON exposure of surface waters of a few ng/L, however, their input dynamics vary considerably in space and time.  相似文献   

11.
Pharmaceutical compounds in the wastewater process stream in Northwest Ohio   总被引:3,自引:0,他引:3  
In order to add to the current state of knowledge regarding occurrence and fate of Pharmaceutical and Personal Care Products (PPCP's) in the environment, influent, effluent and biosolids from three wastewater treatment facilities in Northwest Ohio, USA, and a stream containing effluent discharge from a rural treatment facility were analyzed. The three WWTP facilities vary in size and in community served, but are all Class B facilities. One facility was sampled multiple times in order to assess temporal variability. Twenty compounds including several classes of antibiotics, acidic pharmaceuticals, and prescribed medications were analyzed using ultrasonication extraction, SPE cleanup and liquid chromatography-electrospray ionization tandem mass spectrometry. The highest number of compounds and the greatest concentrations were found in the influent from the largest and most industrial WWTP facility. Short-term temporal variability was minimal at this facility. Many compounds, such as clarithromycin, salicylic acid and gemfibrizol were found at concentrations more than one order of magnitude higher than found in the effluent samples. Effluent waters contained elevated levels of carbamazepine, clindamycin and sulfamethoxazole. Differences in composition and concentration of effluent waters between facilities existed. Biosolid samples from two different facilities were very similar in PPCP composition, although concentrations varied. Ciprofloxacin was found in biosolids at concentrations (up to 46 mug/kg dry mass) lower than values reported elsewhere. Diclofenac survived the WWTP process and was found to persist in stream water incorporating effluent discharge. The low variability within one plant, as compared to the variability found among different wastewater treatment plants locally and in the literature is likely due to differences in population, PPCP usage, plant operations and/or local environment. These data are presented here for comparison with this emerging set of environmental compounds of concern.  相似文献   

12.
An analytical procedure was developed that enables routine analysis of four estrogenic hormones in concentrations below 1 ng/l in surface water and waste water. The recovery was 88-98% with a limit of detection of 0.1-2.4 ng/l depending on the compound and the matrix measured. This method was used to determine the occurrence of 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 alpha-ethinylestradiol in the aquatic environment in The Netherlands. The data show that estrogenic hormones can be detected at low concentrations (up to 6 ng/l) at some locations in surface water. In selected effluents of waste water treatment plants estrone and 17 beta-estradiol were detected in concentrations in the ng/l range. Concentrations of 17 alpha-estradiol and the contraceptive 17 alpha-ethinylestradiol were in most of these samples below the limit of detection. Hormone glucuronides were not detected in most surface water and effluents.  相似文献   

13.
Occurrence and fate of synthetic musk compounds in water environment   总被引:1,自引:0,他引:1  
Synthetic musk compounds (SMCs) occur widely in water environments. The aims of this paper were to investigate the occurrence and fate of SMCs in sewage treatment plants (STPs) and surface waters. Total SMC concentrations ranged from 3.69 to 7.33 μg/L (influent) and from 0.96 to 2.69 μg/L (effluent) in 10 STPs. The SMC concentrations varied with the input source and treatment volume of each STP. Biological treatment processes had a greater SMCs removal effect than chemical treatment, filtration and disinfection processes. The SMC concentrations in surface waters ranged from 0.15 to 16.72 μg/L and exhibited similar SMCs occurrence patterns generally. The fate of SMCs in water environments depends on their physical-chemical properties and their concentrations can be predicted from other SMC concentrations due to their similar fates.  相似文献   

14.
ABSTRACT

This study investigates the occurrence and concentration of Giardia cysts in wastewater and river water samples in Al-Jinderiyah region, Latakia, Syria. A total of 120 samples were collected between October 2016 and October 2017 from influent and effluent of Al-Jinderiyah Waste Water Treatment Plant (WWTP) and from three contaminated river water sites. Samples were concentrated and subjected to microscopic examination. The results show that the concentrations of cysts ranged from 0 to 297 cysts/L in wastewater samples. The overall removal efficiency of cysts in the activated sludge WWTP was 84.35%. The concentrations of cysts ranged from 0 to 128.52 cysts/L in river water samples. The highest concentration in river water was recorded near the raw wastewater discharge point. Seasonal variations of Giardia cysts concentration were significant, and the highest concentrations were recorded in the rainy season. The results suggest that Giardia may pose a public health risk in the studied region.  相似文献   

15.
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 μg/L) and acetaminophen (7.1-11.4 μg/L), antibiotic ofloxacin (0.89-31.7 μg/L), lipid regulators gemfibrozil (2.0-5.9 μg/L) and bezafibrate (1.9-29.8 μg/L), β-blocker atenolol (0.84-2.8 μg/L), hypoglycaemic agent glibenclamide (0.12-15.9 μg/L) and a diuretic hydrochlorothiazide (2.3-4.8 μg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., β-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated.Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.  相似文献   

16.
This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.  相似文献   

17.
The occurrence of 12 selected pharmaceutical compounds and pharmaceutical compound metabolites in sewage treatment works (STW) effluents and surface waters was investigated. The substances selected for the monitoring programme were identified by a risk ranking procedure to identify those substances with the greatest potential to pose a risk to the aquatic environment. STW final effluent and surface water samples were collected from Corby, Great Billing, East Hyde, Harpenden and Ryemeads STWs. Ten of the 12 pharmaceutical compounds were detected in the STW effluent samples: propranolol (100%, median = 76 ng/l), diclofenac (86%, median = 424 ng/l), ibuprofen (84%, median = 3086 ng/l), mefenamic acid (81%, median = 133 ng/l), dextropropoxyphene (74%, median = 195 ng/l), trimethoprim (65%, 70 ng/l), erythromycin (44%, < 10 ng/l), acetyl-sulfamethoxazole (33%, median =< 50 ng/l), sulfamethoxazole (9%, median =< 50 ng/l), tamoxifen (4%, median =< 10 ng/l). In the corresponding receiving streams, fewer compounds and lower concentrations were found: propranolol (87%, median = 29 ng/l), ibuprofen (69%, median = 826 ng/l), mefenamic acid (60%, median = 62 ng/l), dextropropoxyphene (53%, median = 58 ng/l), diclofenac (47%, median =< 20 ng/l), erythromycin (38%, median =< 10 ng/l), trimethoprim (38%, median =< 10 ng/l), acetyl sulfamethoxazole (38%, median =< 50 ng/l). Four human pharmaceutical compounds were detected in samples upstream of the STWs sampled: ibuprofen (57%, median = 181 ng/l), trimethoprim (36%, median < 10 ng/l), erythromycin (17%, median =< 10 ng/l), propranolol (14%, median =< 10 ng/l), suggesting that longer range stream transport of some compounds is possible. The particular STW that was sampled and the month that it was sampled significantly influenced the measured concentrations of several, but not all, substances. There was no significant relationship between usage data and the overall frequency with which different substances were detected. There was however, some evidence to suggest that usage data are positively associated with concentrations of pharmaceuticals in effluent and, particularly, with concentrations measured in surface waters below STWs. These results suggest that most sewage treatment works in England and Wales are likely to be routinely discharging small quantities of pharmaceuticals into UK rivers. None of the pharmaceuticals were found at concentrations that were high enough to cause acute toxic impacts to aquatic organisms. However, insufficient data were available to be able to comment on whether the concentrations measured have the potential to result in more subtle long-term effects on aquatic organisms (e.g. effects on growth, ability to reproduce).  相似文献   

18.
During 8 sampling campaigns carried out over a period of two years, 72 samples, including influent and effluent wastewater, and sludge samples from three conventional wastewater treatment plants (WWTPs), were analyzed to assess the occurrence and fate of 43 pharmaceutical compounds. The selected pharmaceuticals belong to different therapeutic classes, i.e. non-steroidal anti-inflammatory drugs, lipid modifying agents (fibrates and statins), psychiatric drugs (benzodiazepine derivative drugs and antiepileptics), histamine H2-receptor antagonists, antibacterials for systemic use, beta blocking agents, beta-agonists, diuretics, angiotensin converting enzyme (ACE) inhibitors and anti-diabetics. The obtained results showed the presence of 32 target compounds in wastewater influent and 29 in effluent, in concentrations ranging from low ng/L to a few μg/L (e.g. NSAIDs). The analysis of sludge samples showed that 21 pharmaceuticals accumulated in sewage sludge from all three WWTPs in concentrations up to 100 ng/g. This indicates that even good removal rates obtained in aqueous phase (i.e. comparison of influent and effluent wastewater concentrations) do not imply degradation to the same extent. For this reason, the overall removal was estimated as a sum of all the losses of a parent compound produces by different mechanisms of chemical and physical transformation, biodegradation and sorption to solid matter. The target compounds showed very different removal rates and no logical pattern in behaviour even if they belong to the same therapeutic groups. What is clear is that the elimination of most of the substances is incomplete and improvements of the wastewater treatment and subsequent treatments of the produced sludge are required to prevent the introduction of these micro-pollutants in the environment.  相似文献   

19.
In the early 1990s different studies highlighted the relationship between pharmaceuticals, human health and the environment. Among the emerging contaminants, antibiotics are obviously of high concern, because of their potential for inducing antibiotic resistance. In addition, natural and synthetic hormones are relevant because of their potential endocrine-disrupting effects on wildlife. This investigation focuses on the analysis of four classes of veterinary and human pharmaceuticals (sulfonamides, tetracyclines, analgesics and hormones) in surface water and wastewater in Luxembourg. The selected eleven pharmaceuticals include four sulfonamides (sulfathiazole, sulfamethoxazole, sulfadimethoxine and sulfamethazine), two tetracyclines (tetracycline and oxytetracycline), two analgesics (ibuprofen and diclofenac), and three hormones (2 naturals, estrone and β-estradiol, and a synthetic one, 17-α-ethinyl estradiol). The most innovative parts of this study are the simultaneous extraction of the above-mentioned pharmaceuticals as well as tracking their behaviour during flood events in a small river catchment. The method includes pre-concentration by solid phase extraction using Oasis® HLB (Hydrophilic Lipophilic Balance) which gave superior results compared to Chromabond® C-18EC, Chromabond® EASY and Bond Elut® PLEXA cartridges, also evaluated in this investigation. The analysis of the investigated pharmaceutical compounds is carried out by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The limits of quantification were 1 ng L− 1, except for β-estradiol (2 ng L− 1) and 17-α-ethinyl estradiol (6 ng L− 1). Recovery rates range from 70 to 94%, with relative standard deviations between 4 and 19%. Application of this method to river concentration and flood events revealed high concentrations of ibuprofen (10-4000 ng L− 1), with highest levels during flood events, while concentrations of estrogens (1-240 ng L− 1) and sulfonamides (1-20 ng L− 1) were comparatively low.  相似文献   

20.
An analytical method for phenolic endocrine disrupting chemicals and acidic pharmaceuticals in river water was developed using gas chromatography mass spectrometry (GC-MS) coupled with negative chemical ionization (NCI) technique, and used for the determination of these compounds in the Pearl Rivers (Liuxi, Zhujiang and Shijing Rivers). Derivatization using pentafluorobenzoyl chloride (PFBOCl) and pentafluorobenzyl bromide (PFBBr) before GC-MS analysis were applied and optimized for phenolic compounds and acidic compounds, respectively. The target compounds were analyzed for river waters from the upstream to downstream of the Pearl Rivers. Phenolic compounds 4-tert-octylphenol (4-t-OP), 4-nonylphenol (4-NP), bisphenol-A (BPA), estrone (E1), estradiol (E2) and triclosan (TCS) were detected at trace or low levels in the water samples from Liuxi River and Zhujiang River. Diethylstilbestrol (DES) was not detected in the Pearl Rivers. The highest concentrations of the phenolic compounds were found in Shijing River, and they were 3150 ng/L for 4-t-OP, 11,300 ng/L for 4-NP, 1040 ng/L for BPA, 79 ng/L for E1, 7.7 ng/L for E2 and 355 ng/L for TCS, respectively. Only a few acidic pharmaceuticals were detected at low concentrations in water from Liuxi River and Zhujiang River, but the highest concentrations for the acidic pharmaceuticals were also found in Shijing River. The highest concentrations detected for clofibric acid, ibuprofen, gemfibrozil, naproxen, mefenamic acid and diclofenac were 17 ng/L, 685 ng/L, 19.8 ng/L, 125 ng/L, 24.6 ng/l and 150 ng/L, respectively. The results suggest Liuxi and Zhujiang Rivers are only slightly contaminated and can be used as drinking water sources, but Shijing River is heavily polluted by the wastewater from nearby towns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号