首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

2.
An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links − 2.2 ± 0.4 Mg CO2e ha− 1 y− 1; Parkland − 2.0 ± 0.4 Mg CO2e ha− 1 y− 1). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of − 5.4 ± 0.9 Mg CO2e ha− 1 y− 1. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of − 1.6 ± 0.3 Mg CO2e ha− 1 y− 1. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range between fairways and greens in intensity of management.  相似文献   

3.
The effects of insect defoliators on throughfall and soil nutrient fluxes were studied in coniferous and deciduous stands at five UK intensive monitoring plots (1998 to 2008). Links were found between the dissolved organic carbon (DOC), nitrogen (N) and potassium (K) fluxes through the forest system to biological activity within the canopy. Underlying soil type determined the leaching or accumulation of these elements. Under oak, monitored at two sites, frass from caterpillars of Tortrix viridana and Operophtera brumata added direct deposition of ~ 16 kg ha−1extra N during defoliation. Peaks of nitrate (NO3-N) flux between 5 and 9 kg ha−1 (×5 usual winter values) were recorded in consecutive years in shallow soil waters. Synchronous rises in deep soil NO3-N fluxes at the Grizedale sandy site indicate downward flushing, not seen at the clay site. Under three Sitka spruce stands, generation of honeydew (DOC) was attributed to two aphid species (Elatobium abietinum and Cinara pilicornis) with distinctive feeding strategies. Throughfall DOC showed mean annual fluxes (6 seasons) ~ 45-60 kg ha−1 compared with rainfall values of 14-22 kg ha−1. Increases of total N in throughfall and NO3-N fluxes in shallow soil solution were detected — soil water fluxes reached  8 kg ha−1 in Llyn Brianne, ~ 25 kg ha−1 in Tummel, and ~ 40 kg NO3-N ha−1 in Coalburn. At Tummel, on sandy soil, NO3-N leaching showed increased concentration at depth, attributed to microbiological activity within the soil. By contrast, at Coalburn and Llyn Brianne, sites on peaty gleys, soil water NO3-N was retained mostly within the humus layer. Soil type is thus key to predicting N movement and retention patterns. These long term analyses show important direct and indirect effects of phytophagous insects in forest ecosystems, on above and below ground processes affecting tree growth, soil condition, vegetation and water quality.  相似文献   

4.
PM2.5 (particle with an aerodynamic diameter less than 2.5 µm) was measured in different microenvironments of Hong Kong (including one urban tunnel, one Hong Kong/Mainland boundary roadside site, two urban roadside sites, and one urban ambient site) in 2003. The concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 40 elements (Na to U) were determined. The average PM2.5 mass concentrations were 229 ± 90, 129 ± 95, 69 ± 12, 49 ± 18 µg m− 3 in the urban tunnel, cross boundary roadside, urban roadside, and urban ambient environments, respectively. Carbonaceous particles (sum of organic material [OM] and EC) were the dominant constituents, on average, accounting for ∼ 82% of PM2.5 emissions in the tunnel, ∼ 70% at the three roadside sites, and ∼ 48% at the ambient site, respectively. The OC/EC ratios were 0.6 ± 0.2 and 0.8 ± 0.1 at the tunnel and roadside sites, respectively, suggesting carbonaceous aerosols were mainly from vehicle exhausts. Higher OC/EC ratio (1.9 ± 0.7) occurred at the ambient site, indicating contributions from secondary organic aerosols. The PM2.5 emission factor for on-road diesel-fueled vehicles in the urban area of Hong Kong was 257 ± 31 mg veh− 1 km− 1, with a composition of ∼ 51% EC, ∼ 26% OC, and ∼ 9% SO4=. The other inorganic ions and elements made up ∼ 11% of the total PM2.5 emissions. OC composed the largest fraction (∼ 51%) in gasoline and liquid petroleum gas (LPG) emissions, followed by EC (∼ 19%). Diesel engines showed higher emission rates than did gasoline and LPG engines for most pollutants, except for V, Br, Sb, and Ba.  相似文献   

5.
This study assesses individual-vehicle molecular hydrogen (H2) emissions in exhaust gas from current gasoline and diesel vehicles measured on a chassis dynamometer. Absolute H2 emissions were found to be highest for motorcycles and scooters (141 ± 38.6 mg km− 1), approximately 5 times higher than for gasoline-powered automobiles (26.5 ± 12.1 mg km− 1). All diesel-powered vehicles emitted marginal amounts of H2 (∼ 0.1 mg km− 1). For automobiles, the highest emission factors were observed for sub-cycles subject to a cold-start (mean of 53.1 ± 17.0 mg km− 1). High speeds also caused elevated H2 emission factors for sub-cycles reaching at least 150 km h− 1 (mean of 40.4 ± 7.1 mg km− 1). We show that H2/CO ratios (mol mol− 1) from gasoline-powered vehicles are variable (sub-cycle means of 0.44-5.69) and are typically higher (mean for automobiles 1.02, for 2-wheelers 0.59) than previous atmospheric ratios characteristic of traffic-influenced measurements. The lowest mean individual sub-cycle ratios, which correspond to high absolute emissions of both H2 and CO, were observed during cold starts (for automobiles 0.48, for 2-wheelers 0.44) and at high vehicle speeds (for automobiles 0.73, for 2-wheelers 0.45). This finding illustrates the importance of these conditions to observed H2/CO ratios in ambient air. Overall, 2-wheelers displayed lower H2/CO ratios (0.48-0.69) than those from gasoline-powered automobiles (0.75-3.18). This observation, along with the lower H2/CO ratios observed through studies without catalytic converters, suggests that less developed (e.g. 2-wheelers) and older vehicle technologies are largely responsible for the atmospheric H2/CO ratios reported in past literature.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha− 1) in late fall 2005 via surface spreading on un-tilled soil (SSLMB), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg dw ha− 1) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SSDMB). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L− 1 during application-induced tile flow. SSLMB application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p < 0.05), but not A plots (> 0.05). PBDE mass loss via tile (0-2 h post-application) as a percent of mass applied was ~ 0.04-0.1% and ~ 0.8-1.7% for A and SSLMB, respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha− 1 yr− 1, respectively. Total PBDE concentration in soil (0-0.2 m) after both applications was 115 ng g− 1 dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration = 17 ng L− 1) and PFOA (12 ng L− 1) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (< 0.05) land application treatment effects (SSLMB > A > C for tile and SSLMB and A > C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were found between SSDMB and DI treatments (PBDE/PFAS were not measured). But for many metals (Cu, Se, Cd, Mo, Hg and Pb) both SSDMB and DI loads were significantly higher than those from C, but only during < 100 days post DMB application. Clearly, pre-tilling the soil (e.g., A) prior to surface application of LMB will reduce application-based PBDE and metal contamination to tile drainage and shallow groundwater. Directly injecting DMB in soil does not significantly increase metal loading to tile drains relative to SSDMB, thus, DI should be considered a DMB land application option.  相似文献   

7.
Constructed wetlands with horizontal sub-surface flow (HF CWs) have successfully been used for treatment various types of wastewater for more than four decades. Most systems have been designed to treat municipal sewage but the use for wastewaters from agriculture, industry and landfill leachate in HF CWs is getting more attention nowadays. The paper summarizes the results from more than 400 HF CWs from 36 countries around the world. The survey revealed that the highest removal efficiencies for BOD5 and COD were achieved in systems treating municipal wastewater while the lowest efficiency was recorded for landfill leachate. The survey also revealed that HF CWs are successfully used for both secondary and tertiary treatment. The highest average inflow concentrations of BOD5 (652 mg l− 1) and COD (1865 mg l− 1) were recorded for industrial wastewaters followed by wastewaters from agriculture for BOD5 (464 mg l− 1) and landfill leachate for COD (933 mg l− 1). Hydraulic loading data reveal that the highest loaded systems are those treating wastewaters from agriculture and tertiary municipal wastewaters (average hydraulic loading rate 24.3 cm d− 1). On the other hand, landfill leachate systems in the survey were loaded with average only 2.7 cm d− 1. For both BOD5 and COD, the highest average loadings were recorded for agricultural wastewaters (541 and 1239 kg ha− 1 d− 1, respectively) followed by industrial wastewaters (365 and 1212 kg ha− 1 d− 1, respectively). The regression equations for BOD5 and COD inflow/outflow concentrations yielded very loose relationships. Much stronger relationships were found for inflow/outflow loadings and especially for COD. The influence of vegetation on removal of organics in HF CWs is not unanimously agreed but most studies indicated the positive effect of macrophytes.  相似文献   

8.
Leaf-level microscopical symptom structure and physiological responses were investigated in seedlings experimentally exposed to ozone (O3) in indoor chambers (150 ppb, 8 h d− 1 per 7 weeks), and field trees of Manna ash (Fraxinus ornus) exposed to ambient O3 (max 93 ppb per one growing season). Ozone-induced leaf injury, including leaf reddening and stippling, was observed in both seedlings and mature trees, but the morphology of injury in the stipples differed, being hypersensitive-like (HR-like) in the chamber seedlings and accelerated cell senescence (ACS) in the field trees. In both exposure conditions, the main structural impact of O3 was on the mesophyll and especially the upper assimilating cell layers. The main physiological impact was on carbon assimilation and on stomatal sluggishness. These effects were not due to stomatal structural injury and were more severe in juvenile compared to mature trees because of environmental (water availability, light) and constitutional (gas exchange capacity) factors and differences in the cell physiology processes (HR-like vs. ACS) triggered by ozone stress. Given the plasticity of plant responses to ozone stress, dose/response relationships for tree seedlings in the indoor chambers cannot be extrapolated to mature trees unless ambient conditions are closely simulated.  相似文献   

9.
Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM10 to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM10 from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM10. For daily modelling, STEMS-Air achieved r2 values in the range 0.19-0.43 (p < 0.001) based solely on traffic-related emissions and r2 values in the range 0.41-0.63 (p < 0.001) when adding information on ‘background’ levels of PM10. For annual modelling of PM10, the model returned r2 in the range 0.67-0.77 (P < 0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies.  相似文献   

10.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

11.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

12.
An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1 Mg CO2e ha− 1 y− 1; Parkland 0.7 ± 0.2 Mg CO2e ha− 1 y− 1). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of −4.3 ± 0.9 Mg CO2e ha− 1 y− 1. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2 Mg CO2e ha− 1 y− 1. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range between fairways and greens in intensity of management.  相似文献   

13.
Oxidative removal of aqueous steroid estrogens by manganese oxides   总被引:2,自引:0,他引:2  
Xu L  Xu C  Zhao M  Qiu Y  Sheng GD 《Water research》2008,42(20):5038-5044
This study investigated the oxidative removal of steroid estrogens from water by synthetic manganese oxide (MnO2) and the factors influencing the reactions. Using 1 × 10−5 M MnO2 at pH 4, estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2), all at 4 × 10−6 M, were rapidly removed within 220 min, indicating the effectiveness of MnO2 as an oxidizing agent towards estrogens. E2 removal increased with decreasing pH over the tested range of 4-8, due most likely to increased oxidizing power of MnO2 and a cleaner reactive surface in acidic solutions. Coexisting metal ions of 0.01 M (Cu(II), Zn(II), Fe(III) and Mn(II)) and Mn(II) released from MnO2 reduction competed with E2 for reactive sites leading to reduced E2 removal. Observed differential suppression on E2 removal may be related to different speciations of metals, as suggested by the MINTEQ calculations, and hence their different adsorptivities on MnO2. By suppressing the metal effect, humic acid substantially enhanced E2 removal. This was attributed to complexation of humic acid with metal ions. With 0.01 M ZnCl2 in solutions containing 1 mg l−1 humic acid, the binding of humic acid for Zn(II) was determined at 251 mmol g−1. An in vitro assay using human breast carcinoma MCF-7 cells indicated a near elimination of estrogenic activities without secondary risk of estrogen solutions treated with MnO2. Synthetic MnO2 is therefore a promising chemical agent under optimized conditions for estrogen removal from water. Metal chelators recalcitrant to MnO2 oxidation may be properly used to further enhance the MnO2 performance.  相似文献   

14.
Annual paddy rice-winter wheat rotation constitutes one of the typical cropping systems in southeast China, in which various water regimes are currently practiced during the rice-growing season, including continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding and moisture but without waterlogging (F-D-F-M). We conducted a field experiment in a rice-winter wheat rotation system to gain an insight into the water regime-specific emission factors and background emissions of nitrous oxide (N2O) over the whole annual cycle. While flooding led to an unpronounced N2O emission during the rice-growing season, it incurred substantial N2O emission during the following non-rice season. During the non-rice season, N2O fluxes were, on average, 2.61 and 2.48 mg N2O-N m2 day− 1 for the 250 kg N ha− 1 applied plots preceded by the F and F-D-F water regimes, which are 56% and 49% higher than those by the F-D-F-M water regime, respectively. For the annual rotation system experienced by continuous flooding during the rice-growing season, the relationship between N2O emission and nitrogen input predicted the emission factor and background emission of N2O to be 0.87% and 1.77 kg N2O-N ha− 1, respectively. For the plots experienced by the water regimes of F-D-F and F-D-F-M, the emission factors of N2O averaged 0.97% and 0.85%, with background N2O emissions of 2.00 kg N2O-N ha− 1 and 1.61 kg N2O-N ha− 1 for the annual rotation system, respectively. Annual direct N2O-N emission was estimated to be 98.1 Gg yr− 1 in Chinese rice-based cropping systems in the 1990s, consisting of 32.3 Gg during the rice-growing season and 65.8 Gg during the non-rice season, which accounts for 25-35% of the annual total emission from croplands in China.  相似文献   

15.
Ca-loaded Pelvetia canaliculata biomass was used to remove Pb2+ in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g−1) and hydroxyl (0.8 mmol g−1), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO3 and CaCl2) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H+ and Pb2+ for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants αCaH = 9 ± 1 and αCaPb = 44 ± 5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3 M HNO3) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73 × 10−7 cm2 s−1 for H+, 7.56 × 10−8 cm2 s−1 for Pb2+ and 6.37 × 10−8 cm2 s−1 for Ca2+.  相似文献   

16.
Different pelagic areas of the Mediterranean Sea have been investigated in order to quantify physical and biological mixing processes in deep sea sediments. Herein, results of eleven sediment cores sampled at different deep areas (> 2000 m) of the Western and Eastern Mediterranean Sea are presented.210Pbxs and 137Cs vertical profiles, together with 14C dating, are used to identify the main processes characterising the different areas and, finally, controlling mixing depths (SML) and bioturbation coefficients (Db). Radionuclide vertical profiles and inventories indicate that bioturbation processes are the dominant processes responsible for sediment reworking in deep sea environments.Results show significant differences in sediment mixing depths and bioturbation coefficients among areas of the Mediterranean Sea characterised by different trophic regimes. In particular, in the Oran Rise area, where the Almeria-Oran Front induces frequent phytoplankton blooms, we calculate the highest values of sediment mixing layers (13 cm) and bioturbation coefficients (0.187 cm2 yr−1), and the highest values of 210Pbxs and 137Cs inventories. Intermediate values of SML and Db (~ 6 cm and ~ 0.040 cm2 yr−1, respectively) characterise the mesothrophic Algero-Balearic basin, while in the Southern Tyrrhenian Sea mixing parameters (SML of 3 cm and Db of 0.011 cm2 yr−1) are similar to those calculated for the oligotrophic Eastern Mediterranean (SML of 2 cm and Db of ~ 0.005 cm2 yr−1).  相似文献   

17.
The purpose of this study was to link meteorological factors and mosquito (Aedes aegypti) abundance to examine the potential effects of climate variations on patterns of dengue epidemiology in Taiwan during 2001-2008. Spearman's rank correlation tests with and without time-lag were performed to investigate the overall correlation between dengue incidence rates and meteorological variables (i.e., minimum, mean, and maximum temperatures, relative humidity (RH), and rainfall) and percentage Breteau index (BI) level > 2 in Taipei and Kaohsiung of northern and southern Taiwan, respectively. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach. The most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). Spearman's rank correlation tests revealed marginally positive trends in the weekly mean (ρ = 0.28, < 0.0001), maximum (ρ = 0.26, < 0.0001), and minimum (ρ = 0.30, < 0.0001) temperatures in Taipei. However, in Kaohsiung, all negative trends were found in the weekly mean (ρ = − 0.32, < 0.0001), maximum (ρ = − 0.30, < 0.0001), and minimum (ρ = − 0.32, p < 0.0001) temperatures. This study concluded that based on the GEE approach, rainfall, minimum temperature, and RH, all with 3-month lag, and 1-month lag of percentage BI level > 2 are the significant predictors of dengue incidence in Kaohsiung (QICu = − 277.77). This study suggested that warmer temperature with 3-month lag, elevated humidity with high mosquito density increased the transmission rate of human dengue fever infection in southern Taiwan.  相似文献   

18.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

19.
To investigate the potential role of ammonia in ion chemistry of PM2.5 aerosol, measurements of PM2.5 (particulate matter having aerodynamic diameter < 2.5 µm) along with its ionic speciation and gaseous pollutants (sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and nitric acid (HNO3)) were undertaken in two seasons (summer and winter) of 2007-2008 at four sampling sites in Kanpur, an urban-industrial city in the Ganga basin, India. Mean concentrations of water-soluble ions were observed in the following order (i) summer: SO42− (26.3 µg m− 3) > NO3 (16.8) > NH4+ (15.1) > Ca2+ (4.1) > Na+ (2.4) > K+ (2.1 µg m− 3) and (ii) winter: SO42− (28.9 µg m− 3) > NO3 (23.0) > NH4+ (16.4) > Ca2+(3.4) > K+(3.3) > Na+ (3.2 µg m− 3). The mean molar ratio of NH4+ to SO42− was 2.8 ± 0.6 (mostly >2), indicated abundance of NH3 to neutralize H2SO4. The excess of NH4+ was inferred to be associated with NO3 and Cl. Higher sulfur conversion ratio (Fs: 58%) than nitrogen conversion ratio (Fn: 39%) indicated that SO42− was the preferred secondary species to NO3. The charge balance for the ion chemistry of PM2.5 revealed that compounds formed from ammonia as precursor are (NH4)2SO4, NH4NO3 and NH4Cl. This study conclusively established that while there are higher contributions of NH4+, SO42− to PM2.5 in summer but for nitrates (in particulate phase), it is the winter season, which is critical because of low temperatures that drives the reaction between ammonia and HNO3 in forward direction for enhanced nitrate formation. In summary, inorganic secondary aerosol formation accounted for 30% mass of PM2.5 and any particulate control strategy should include optimal control of primary precursor gases including ammonia.  相似文献   

20.
Leaf-level microscopical symptom structure and physiological responses were investigated in seedlings experimentally exposed to ozone (O3) in indoor chambers (150 ppb, 8 h d 1/7 weeks), and field trees of Manna ash (Fraxinus ornus) exposed to ambient O3 (max 93 ppb/one growing season). Ozone-induced leaf injury, including leaf reddening and stippling, was observed in both seedlings and mature trees, but the morphology of injury in the stipples differed, being hypersensitive-like (HR-like) in the chamber seedlings and accelerated cell senescence (ACS) in the field trees. In both exposure conditions, the main structural impact of O3 was on the mesophyll and especially the upper assimilating cell layers. The main physiological impact was on carbon assimilation and on stomatal sluggishness. These effects were not due to stomatal structural injury and were more severe in juvenile compared to mature trees because of environmental (water availability, light) and constitutional (gas exchange capacity) factors and differences in the cell physiology processes (HR-like vs. ACS) triggered by ozone stress. Given the plasticity of plant responses to ozone stress, dose/response relationships for tree seedlings in the indoor chambers cannot be extrapolated to mature trees unless ambient conditions are closely simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号